{"title":"Quantitative analysis of the performance improvement of the surrounding rock mass by applying a prestressed bolt system.","authors":"Xuxu Yang, Hongyun Xue, Junwei Guo, Mingming Zhang","doi":"10.1038/s41598-025-91976-z","DOIUrl":null,"url":null,"abstract":"<p><p>Prestressed bolts have been increasingly used in underground engineering as a practical solution to control the instability of surrounding rock masses. However, blindly increasing the density of prestressed bolt has limited influence on the performance improvement of tunnel surrounding rock mass. Therefore, the accurate design of the parameters of the prestressed bolt in the support system is a significant method to improve the bearing capacity of the tunnel surrounding rock. To solve this problem, we carried out large-scale physical model tests of anchored rock block with nonpersistent joints. An innovative method for prestressed bolt simulation is proposed by using the code independently developed in PFC<sup>3D</sup>, and then a series of numerical model compression tests of anchored rock block with different prestressed bolt densities are extended based on physical model tests. The results indicate that the original failure mode of the rock block is not changed by adding bolt. And an increase in the density of the prestressed bolt leads to a change in the anchoring mechanism of the rock block. When the density of prestressed bolt is low, the upper load is mainly borne by rock block, and the increase of the density of bolt will mobilize more intact rock to participate in the load. When the density of prestressed bolt increases to a certain extent, the upper load is mainly borne by the prestressed bolt. And the performance improvement of prestressed bolt to rock block is limited. When the prestress and density of bolt reach a certain degree, the strength of rock mass is only increased by 10% when the prestress and density of bolt are doubled. The increase of the density of prestressed bolt makes the deformation of rock block more stable, and the ɛ<sub>3</sub>/ɛ<sub>1</sub> ratio of the anchored rock block is always less than 1.0. The research results have important guiding significance for tunnel surrounding rock masses support design.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"7186"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-91976-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Prestressed bolts have been increasingly used in underground engineering as a practical solution to control the instability of surrounding rock masses. However, blindly increasing the density of prestressed bolt has limited influence on the performance improvement of tunnel surrounding rock mass. Therefore, the accurate design of the parameters of the prestressed bolt in the support system is a significant method to improve the bearing capacity of the tunnel surrounding rock. To solve this problem, we carried out large-scale physical model tests of anchored rock block with nonpersistent joints. An innovative method for prestressed bolt simulation is proposed by using the code independently developed in PFC3D, and then a series of numerical model compression tests of anchored rock block with different prestressed bolt densities are extended based on physical model tests. The results indicate that the original failure mode of the rock block is not changed by adding bolt. And an increase in the density of the prestressed bolt leads to a change in the anchoring mechanism of the rock block. When the density of prestressed bolt is low, the upper load is mainly borne by rock block, and the increase of the density of bolt will mobilize more intact rock to participate in the load. When the density of prestressed bolt increases to a certain extent, the upper load is mainly borne by the prestressed bolt. And the performance improvement of prestressed bolt to rock block is limited. When the prestress and density of bolt reach a certain degree, the strength of rock mass is only increased by 10% when the prestress and density of bolt are doubled. The increase of the density of prestressed bolt makes the deformation of rock block more stable, and the ɛ3/ɛ1 ratio of the anchored rock block is always less than 1.0. The research results have important guiding significance for tunnel surrounding rock masses support design.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.