Zhijing Liu, Tong Su, Michail A Zakharov, Guoliang Wei, Sangkeum Lee
{"title":"Software defect prediction based on residual/shuffle network optimized by upgraded fish migration optimization algorithm.","authors":"Zhijing Liu, Tong Su, Michail A Zakharov, Guoliang Wei, Sangkeum Lee","doi":"10.1038/s41598-025-91784-5","DOIUrl":null,"url":null,"abstract":"<p><p>The study introduces a new method for predicting software defects based on Residual/Shuffle (RS) Networks and an enhanced version of Fish Migration Optimization (UFMO). The overall contribution is to improve the accuracy, and reduce the manual effort needed. The originality of this work rests in the synergic use of deep learning and metaheuristics to train the software code for extraction of semantic and structural properties. The model is tested on a variety of open-source projects, yielding an average accuracy of 93% and surpassing the performance of the state-of-the-art models. The results indicate an overall increase in the precision (78-98%), recall (71-98%), F-measure (72-96%), and Area Under the Curve (AUC) (78-99%). The proposed model is simple and efficient and proves to be effective in identifying potential defects, consequently decreasing the chance of missing these defects and improving the overall quality of the software as opposed to existing approaches. However, the analysis is limited to open-source projects and warrants further evaluation on proprietary software. The study enables a robust and efficient tool for developers. This approach can revolutionize software development practices in order to use artificial intelligence to solve difficult issues presented in software. The model offers high accuracy to reduce the software development cost, which can improve user satisfaction, and enhance the overall quality of software being developed.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"7201"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-91784-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The study introduces a new method for predicting software defects based on Residual/Shuffle (RS) Networks and an enhanced version of Fish Migration Optimization (UFMO). The overall contribution is to improve the accuracy, and reduce the manual effort needed. The originality of this work rests in the synergic use of deep learning and metaheuristics to train the software code for extraction of semantic and structural properties. The model is tested on a variety of open-source projects, yielding an average accuracy of 93% and surpassing the performance of the state-of-the-art models. The results indicate an overall increase in the precision (78-98%), recall (71-98%), F-measure (72-96%), and Area Under the Curve (AUC) (78-99%). The proposed model is simple and efficient and proves to be effective in identifying potential defects, consequently decreasing the chance of missing these defects and improving the overall quality of the software as opposed to existing approaches. However, the analysis is limited to open-source projects and warrants further evaluation on proprietary software. The study enables a robust and efficient tool for developers. This approach can revolutionize software development practices in order to use artificial intelligence to solve difficult issues presented in software. The model offers high accuracy to reduce the software development cost, which can improve user satisfaction, and enhance the overall quality of software being developed.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.