The Monochoria genome provides insights into the molecular mechanisms underlying floral heteranthery.

IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Genetics and Genomics Pub Date : 2025-02-26 DOI:10.1016/j.jgg.2025.02.008
Jingshan Yang, Jinming Chen, Xiangyan He, Guangxi Wang, Spencer C H Barrett, Zhizhong Li
{"title":"The Monochoria genome provides insights into the molecular mechanisms underlying floral heteranthery.","authors":"Jingshan Yang, Jinming Chen, Xiangyan He, Guangxi Wang, Spencer C H Barrett, Zhizhong Li","doi":"10.1016/j.jgg.2025.02.008","DOIUrl":null,"url":null,"abstract":"<p><p>Heteranthery, the occurrence of functionally and structurally distinct stamens within a flower, represents a striking example of convergent evolution among diverse animal-pollinated lineages. Although the ecological basis of this somatic polymorphism is understood, the developmental and molecular mechanisms are largely unknown. To address this knowledge gap, we selected Monochoria elata (Pontederiaceae) as our study system due to its typical heterantherous floral structure. We constructed a chromosome-level genome assembly of M. elata, conducted transcriptomic analyses and target phytohormone metabolome analysis to explore gene networks and hormones associated with heteranthery. We focused on three key stamen characteristics-colour, spatial patterning, and filament elongation-selected for their significant roles in stamen differentiation and their relevance to the functional diversity observed in heterantherous species. Our analyses suggest that gene networks involving MelLEAFY3, MADS-box, and TCP genes regulate stamen identity, with anthocyanin influencing colour, and lignin contributing to filament elongation. Additionally, variation in jasmonic acid and abscisic acid concentration between feeding and pollinating anthers appears to contribute to their morphological divergence. Our findings highlight gene networks and hormones associated with intra-floral stamen differentiation and indicate that whole genome duplications have likely facilitated the evolution of heternathery during divergence from other Pontederiaceae without heteranthery.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jgg.2025.02.008","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Heteranthery, the occurrence of functionally and structurally distinct stamens within a flower, represents a striking example of convergent evolution among diverse animal-pollinated lineages. Although the ecological basis of this somatic polymorphism is understood, the developmental and molecular mechanisms are largely unknown. To address this knowledge gap, we selected Monochoria elata (Pontederiaceae) as our study system due to its typical heterantherous floral structure. We constructed a chromosome-level genome assembly of M. elata, conducted transcriptomic analyses and target phytohormone metabolome analysis to explore gene networks and hormones associated with heteranthery. We focused on three key stamen characteristics-colour, spatial patterning, and filament elongation-selected for their significant roles in stamen differentiation and their relevance to the functional diversity observed in heterantherous species. Our analyses suggest that gene networks involving MelLEAFY3, MADS-box, and TCP genes regulate stamen identity, with anthocyanin influencing colour, and lignin contributing to filament elongation. Additionally, variation in jasmonic acid and abscisic acid concentration between feeding and pollinating anthers appears to contribute to their morphological divergence. Our findings highlight gene networks and hormones associated with intra-floral stamen differentiation and indicate that whole genome duplications have likely facilitated the evolution of heternathery during divergence from other Pontederiaceae without heteranthery.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Genetics and Genomics
Journal of Genetics and Genomics 生物-生化与分子生物学
CiteScore
8.20
自引率
3.40%
发文量
4756
审稿时长
14 days
期刊介绍: The Journal of Genetics and Genomics (JGG, formerly known as Acta Genetica Sinica ) is an international journal publishing peer-reviewed articles of novel and significant discoveries in the fields of genetics and genomics. Topics of particular interest include but are not limited to molecular genetics, developmental genetics, cytogenetics, epigenetics, medical genetics, population and evolutionary genetics, genomics and functional genomics as well as bioinformatics and computational biology.
期刊最新文献
Genome-wide analysis of Q binding reveals a regulatory network that coordinates wheat grain yield and grain protein content. Identification and functional characterization of pathogenic FOXI3 variants in craniofacial microsomia. GLGW10 controls grain size associated with the lignin content in rice. The Monochoria genome provides insights into the molecular mechanisms underlying floral heteranthery. Amyloid-β oligomers drive amyloid deposit and cascaded tau pathology of Alzheimer's disease in aged brains of non-human primates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1