Yizeng Fan, Yuzhao Wang, Weichao Dan, Yilei Zhang, Li Nie, Zhiqiang Ma, Yanxin Zhuang, Bo Liu, Mengxing Li, Tianjie Liu, Zixi Wang, Leihong Ye, Yi Wei, Yuzeshi Lei, Chendong Guo, Jiale An, Chi Wang, Yulin Zhang, Jin Zeng, Wenyi Wei, Boyi Gan, Lei Li
{"title":"PRMT5-mediated arginine methylation stabilizes GPX4 to suppress ferroptosis in cancer","authors":"Yizeng Fan, Yuzhao Wang, Weichao Dan, Yilei Zhang, Li Nie, Zhiqiang Ma, Yanxin Zhuang, Bo Liu, Mengxing Li, Tianjie Liu, Zixi Wang, Leihong Ye, Yi Wei, Yuzeshi Lei, Chendong Guo, Jiale An, Chi Wang, Yulin Zhang, Jin Zeng, Wenyi Wei, Boyi Gan, Lei Li","doi":"10.1038/s41556-025-01610-3","DOIUrl":null,"url":null,"abstract":"<p>The activation of ferroptosis has shown great potential for cancer therapy from an unconventional perspective, but revealing the mechanisms underlying the suppression of tumour-intrinsic ferroptosis to promote tumorigenesis remains a challenging task. Here we report that methionine is metabolized into <i>S</i>-adenosylmethionine, which functions as a methyl-group donor to trigger symmetric dimethylation of glutathione peroxidase 4 (GPX4) at the conserved arginine 152 (R152) residue, along with a prolonged GPX4 half-life. Inhibition of protein arginine methyltransferase 5 (PRMT5), which catalyses GPX4 methylation, decreases GPX4 protein levels by impeding GPX4 methylation and increasing ferroptosis inducer sensitivity in vitro and in vivo. This methylation prevents Cullin1-FBW7 E3 ligase binding to GPX4, thereby abrogating the ubiquitination-mediated GPX4 degradation. Notably, combining PRMT5 inhibitor treatment with ferroptotic therapies markedly suppresses tumour progression in mouse tumour models. In addition, the levels of GPX4 are negatively correlated with the levels of FBW7 and a poor prognosis in patients with human carcinoma. In summary, we found that PRMT5 functions as a target for improving cancer therapy efficacy, by acting to reduce the counteraction of ferroptosis by tumour cells by means of PRMT5-enhanced GPX4 stability.</p>","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"33 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41556-025-01610-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The activation of ferroptosis has shown great potential for cancer therapy from an unconventional perspective, but revealing the mechanisms underlying the suppression of tumour-intrinsic ferroptosis to promote tumorigenesis remains a challenging task. Here we report that methionine is metabolized into S-adenosylmethionine, which functions as a methyl-group donor to trigger symmetric dimethylation of glutathione peroxidase 4 (GPX4) at the conserved arginine 152 (R152) residue, along with a prolonged GPX4 half-life. Inhibition of protein arginine methyltransferase 5 (PRMT5), which catalyses GPX4 methylation, decreases GPX4 protein levels by impeding GPX4 methylation and increasing ferroptosis inducer sensitivity in vitro and in vivo. This methylation prevents Cullin1-FBW7 E3 ligase binding to GPX4, thereby abrogating the ubiquitination-mediated GPX4 degradation. Notably, combining PRMT5 inhibitor treatment with ferroptotic therapies markedly suppresses tumour progression in mouse tumour models. In addition, the levels of GPX4 are negatively correlated with the levels of FBW7 and a poor prognosis in patients with human carcinoma. In summary, we found that PRMT5 functions as a target for improving cancer therapy efficacy, by acting to reduce the counteraction of ferroptosis by tumour cells by means of PRMT5-enhanced GPX4 stability.
期刊介绍:
Nature Cell Biology, a prestigious journal, upholds a commitment to publishing papers of the highest quality across all areas of cell biology, with a particular focus on elucidating mechanisms underlying fundamental cell biological processes. The journal's broad scope encompasses various areas of interest, including but not limited to:
-Autophagy
-Cancer biology
-Cell adhesion and migration
-Cell cycle and growth
-Cell death
-Chromatin and epigenetics
-Cytoskeletal dynamics
-Developmental biology
-DNA replication and repair
-Mechanisms of human disease
-Mechanobiology
-Membrane traffic and dynamics
-Metabolism
-Nuclear organization and dynamics
-Organelle biology
-Proteolysis and quality control
-RNA biology
-Signal transduction
-Stem cell biology