Light-Responsive Nanoemulsion-Guided Assembly of Honeycomb Hierarchically Macro/mesoporous Metal–Organic Framework Nanoarchitectures

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2025-03-03 DOI:10.1002/smll.202411525
Hui Lv, Nan Li, Jieling Zhang, Yawen Hou, Xinyu Fan, Xiaoran Liu, Fuquan Dang
{"title":"Light-Responsive Nanoemulsion-Guided Assembly of Honeycomb Hierarchically Macro/mesoporous Metal–Organic Framework Nanoarchitectures","authors":"Hui Lv, Nan Li, Jieling Zhang, Yawen Hou, Xinyu Fan, Xiaoran Liu, Fuquan Dang","doi":"10.1002/smll.202411525","DOIUrl":null,"url":null,"abstract":"Despite that soft template pathways are promising avenues for synthesizing hierarchically porous metal–organic framework (MOF) nanoparticles, smart-responsive-directed assembly strategies have been rarely extended to fabricate well-defined hierarchical macro/mesoporosities in MOF architectures. Herein, a novel light-responsive nanoemulsion-guided strategy is reported to prepare honeycomb hierarchically porous UiO-66 nanoparticles (UiO-66 HHPNPs) with macro/mesoporosities transition using poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (F127, PEO<sub>106</sub>PPO<sub>70</sub>PEO<sub>106</sub>) and azobenzene (Azo) as a light-responsive soft template. By facilely tuning the concentration of Azo and light irradiation (e.g., 365 nm ultraviolet light), the assembled UiO-66 HHPNPs varies from microporous architectures to macro/mesoporous dendritic architectures with an average pore size expanding from 14 to 135 nm. It is worth noting that the cis–trans configuration transformation of Azo under the irradiation of 475 nm blue light results in the shrunken micelles and thus rapid template removal from macro/mesoporous architectures of UiO-66 HHPNPs. Additionally, a light-responsive soft template can also alter the pore structures of other MOF nanoparticles (e.g., zirconium-based UiO-66). Importantly, the resultant macro/mesoporous UiO-66 HHPNPs reveal superior catalytic activity than the microporous UiO-66 HHPNPs in the 3,3′,5,5′-tetramethylbenzidine catalytic reaction system. This newfangled light-induced template assembly technique paves an attractive way for the rational design of multimodal macro/mesoporous architectures and thus renders them broad applications.","PeriodicalId":228,"journal":{"name":"Small","volume":"25 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202411525","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite that soft template pathways are promising avenues for synthesizing hierarchically porous metal–organic framework (MOF) nanoparticles, smart-responsive-directed assembly strategies have been rarely extended to fabricate well-defined hierarchical macro/mesoporosities in MOF architectures. Herein, a novel light-responsive nanoemulsion-guided strategy is reported to prepare honeycomb hierarchically porous UiO-66 nanoparticles (UiO-66 HHPNPs) with macro/mesoporosities transition using poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (F127, PEO106PPO70PEO106) and azobenzene (Azo) as a light-responsive soft template. By facilely tuning the concentration of Azo and light irradiation (e.g., 365 nm ultraviolet light), the assembled UiO-66 HHPNPs varies from microporous architectures to macro/mesoporous dendritic architectures with an average pore size expanding from 14 to 135 nm. It is worth noting that the cis–trans configuration transformation of Azo under the irradiation of 475 nm blue light results in the shrunken micelles and thus rapid template removal from macro/mesoporous architectures of UiO-66 HHPNPs. Additionally, a light-responsive soft template can also alter the pore structures of other MOF nanoparticles (e.g., zirconium-based UiO-66). Importantly, the resultant macro/mesoporous UiO-66 HHPNPs reveal superior catalytic activity than the microporous UiO-66 HHPNPs in the 3,3′,5,5′-tetramethylbenzidine catalytic reaction system. This newfangled light-induced template assembly technique paves an attractive way for the rational design of multimodal macro/mesoporous architectures and thus renders them broad applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Light-Responsive Nanoemulsion-Guided Assembly of Honeycomb Hierarchically Macro/mesoporous Metal–Organic Framework Nanoarchitectures Synthetic Manipulation on the Microstructure of Co Species-Containing Mesoporous Silica Matrices: Impact on the Efficiency for Fischer-Tropsch and Water Oxidation Reactions A Seamlessly Integrated Device of Wireless Energy Storage and Humidity Sensing for Human-Machine Interaction of Respiration Functional Complexity of Engineered Neural Networks Self-Organized on Structured 3D Interfaces 3D Integrated Physicochemical-Sensing Electronic Skin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1