Clarify the impact of chloride ion migration in different concentration fields on the hydration and microstructure characteristics of ultra-low water/binder ratio cement-based composites under submerged conditions

IF 10.8 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Cement & concrete composites Pub Date : 2025-03-03 DOI:10.1016/j.cemconcomp.2025.106014
J.Y. Zhu , S.Y. Fu , K. Wei , X. Liu , Y.K. Chen , R.K. Wang , R. Yu
{"title":"Clarify the impact of chloride ion migration in different concentration fields on the hydration and microstructure characteristics of ultra-low water/binder ratio cement-based composites under submerged conditions","authors":"J.Y. Zhu ,&nbsp;S.Y. Fu ,&nbsp;K. Wei ,&nbsp;X. Liu ,&nbsp;Y.K. Chen ,&nbsp;R.K. Wang ,&nbsp;R. Yu","doi":"10.1016/j.cemconcomp.2025.106014","DOIUrl":null,"url":null,"abstract":"<div><div>The effect of chloride ion migration on the hydration and microstructural characteristics of ultra-low water/binder ratio cementitious composites (ULWBRCC) in different concentration fields is clarified through the combination of experimental methods and thermodynamic simulations. Specifically, the effects of ion migration on pore concentration, hydration phases, and microstructure in ULWBRCC are analyzed in three repair scenarios: freshwater-mixed and underwater repair (FWR), freshwater-mixed and marine repairs (FMR), and seawater-mixed and marine repairs (SMR). The experimental and thermodynamic simulation results indicate a strong correlation between ion migration and the early pore concentration in the matrix. In SMR, chloride ions in the pores stabilize early, and external chloride migration primarily occurs in the later stages of hydration. In FMR, no chloride ions are present in the early pore structure, and the concentration gradient is mainly external. Compared to FWR, the increased seawater ion concentration, driven by ionic migration and chemical reactions, leads to the lowest hydration degree in SMR, with a 27.22 % reduction in C-S-H and a 10.83 % increase in AFt. And chloride ions transform the AFm phase into Friedel salt.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"160 ","pages":"Article 106014"},"PeriodicalIF":10.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958946525000964","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of chloride ion migration on the hydration and microstructural characteristics of ultra-low water/binder ratio cementitious composites (ULWBRCC) in different concentration fields is clarified through the combination of experimental methods and thermodynamic simulations. Specifically, the effects of ion migration on pore concentration, hydration phases, and microstructure in ULWBRCC are analyzed in three repair scenarios: freshwater-mixed and underwater repair (FWR), freshwater-mixed and marine repairs (FMR), and seawater-mixed and marine repairs (SMR). The experimental and thermodynamic simulation results indicate a strong correlation between ion migration and the early pore concentration in the matrix. In SMR, chloride ions in the pores stabilize early, and external chloride migration primarily occurs in the later stages of hydration. In FMR, no chloride ions are present in the early pore structure, and the concentration gradient is mainly external. Compared to FWR, the increased seawater ion concentration, driven by ionic migration and chemical reactions, leads to the lowest hydration degree in SMR, with a 27.22 % reduction in C-S-H and a 10.83 % increase in AFt. And chloride ions transform the AFm phase into Friedel salt.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cement & concrete composites
Cement & concrete composites 工程技术-材料科学:复合
CiteScore
18.70
自引率
11.40%
发文量
459
审稿时长
65 days
期刊介绍: Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.
期刊最新文献
Mechanical properties and its prediction of sulphoaluminate cement-engineered cementitious composites (SAC-ECC) as rapid repair materials applied in winter construction Clarify the impact of chloride ion migration in different concentration fields on the hydration and microstructure characteristics of ultra-low water/binder ratio cement-based composites under submerged conditions The compatibility of highly carboxylated polycarboxylate superplasticizer with sodium gluconate retarder in alkali-activated slag system Exploring the curing regimes for nonhydraulic-hydraulic cementitious material composite binder: Study on the hemihydrate phosphogypsum-ground granulated blast-furnace slag system Enhanced thermal insulation of biochar-gypsum composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1