{"title":"Dimensionality-Induced Transition from Degenerate to Nondegenerate States in Nb-Doped WSe2","authors":"Kaito Kanahashi, Itsuki Tanaka, Tomonori Nishimura, Kohei Aso, Anh Khoa Augustin Lu, Satoru Morito, Limi Chen, Takafumi Kakeya, Satoshi Watanabe, Yoshifumi Oshima, Yukiko Yamada-Takamura, Keiji Ueno, Amin Azizi, Kosuke Nagashio","doi":"10.1021/acsnano.4c17660","DOIUrl":null,"url":null,"abstract":"Substitutional doping in transition-metal dichalcogenides (TMDCs) is a pivotal strategy for tuning their electronic and optical properties, enabling their integration into next-generation electronic and optoelectronic devices. This study examines the critical doping levels at which doped TMDCs transition from nondegenerate to degenerate semiconductors, comparing three-dimensional (3D) bulk TMDCs with their two-dimensional (2D) counterparts. Through systematic characterization of Nb-doped WSe<sub>2</sub>, we demonstrate that, although high Nb-doped WSe<sub>2</sub> bulk samples (Nb density: 3.9 × 10<sup>20</sup> cm<sup>–3</sup>, 2.3% doping level) exhibit degenerate transport behavior, ambipolar behavior emerges at the monolayer limit. This observation highlights a significant increase in the critical doping level upon transitioning from 3D to 2D systems. To elucidate these phenomena, we develop a semiempirical model that incorporates the enhanced dopant ions’ activation energy due to the quantum confinement effect and the modification of the dielectric environment surrounding 2D systems, revealing mechanisms underlying these dimensionality-induced differences. This understanding facilitates the design of doping strategies for high-performance electronic and optoelectronic devices.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"5 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c17660","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Substitutional doping in transition-metal dichalcogenides (TMDCs) is a pivotal strategy for tuning their electronic and optical properties, enabling their integration into next-generation electronic and optoelectronic devices. This study examines the critical doping levels at which doped TMDCs transition from nondegenerate to degenerate semiconductors, comparing three-dimensional (3D) bulk TMDCs with their two-dimensional (2D) counterparts. Through systematic characterization of Nb-doped WSe2, we demonstrate that, although high Nb-doped WSe2 bulk samples (Nb density: 3.9 × 1020 cm–3, 2.3% doping level) exhibit degenerate transport behavior, ambipolar behavior emerges at the monolayer limit. This observation highlights a significant increase in the critical doping level upon transitioning from 3D to 2D systems. To elucidate these phenomena, we develop a semiempirical model that incorporates the enhanced dopant ions’ activation energy due to the quantum confinement effect and the modification of the dielectric environment surrounding 2D systems, revealing mechanisms underlying these dimensionality-induced differences. This understanding facilitates the design of doping strategies for high-performance electronic and optoelectronic devices.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.