Hongya Gan, Yan Jiang, Lixiang Wu, Bingqi Zhu, Dapeng Ji, Jing Liu, Zhishan Ding, Xiaoqing Ye
{"title":"Long-term and low-dose exposure to triclosan induces POI phenotype in female offspring mice","authors":"Hongya Gan, Yan Jiang, Lixiang Wu, Bingqi Zhu, Dapeng Ji, Jing Liu, Zhishan Ding, Xiaoqing Ye","doi":"10.1016/j.envpol.2025.125966","DOIUrl":null,"url":null,"abstract":"Triclosan (TCS), a typical endocrine disruptor, is widely used as an antibacterial agent in consumer goods. However, there are few studies on the effects of long-term low-dose TCS exposure on ovarian function in F1 female mice. In this paper, F1 female mice were exposed to TCS (0-3000 μg/kg/day) from intrauterine to postnatal day (PND) 91 to investigate its effects on the ovary. The results revealed that the number of total follicles was decreased, while atretic follicles was increased after TCS exposure. At the hormonal level, the secretion of estradiol was reduced, while follicle-stimulating hormone and luteinizing hormone were increased after TCS exposure. Observation of vaginal smear showed that TCS disrupted the estrous cycle of F1 female mice, especially at the dose of 3000 μg/kg/day. Moreover, TCS promoted cell apoptosis by activating the p38-MAPK signaling pathway and oxidative stress <em>in vitro</em>. In addition, analysis of the fecal microbiome and serum metabolomics revealed that exposure to TCS may cause gut microbiota disruption and metabolic abnormalities in F1 female mice. In conclusion, long-term low-dose TCS exposure may induce primary ovarian insufficiency phenotype in F1 female mice via inducing cell apoptosis and disrupting gut microbiota and metabolism.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"34 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2025.125966","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Triclosan (TCS), a typical endocrine disruptor, is widely used as an antibacterial agent in consumer goods. However, there are few studies on the effects of long-term low-dose TCS exposure on ovarian function in F1 female mice. In this paper, F1 female mice were exposed to TCS (0-3000 μg/kg/day) from intrauterine to postnatal day (PND) 91 to investigate its effects on the ovary. The results revealed that the number of total follicles was decreased, while atretic follicles was increased after TCS exposure. At the hormonal level, the secretion of estradiol was reduced, while follicle-stimulating hormone and luteinizing hormone were increased after TCS exposure. Observation of vaginal smear showed that TCS disrupted the estrous cycle of F1 female mice, especially at the dose of 3000 μg/kg/day. Moreover, TCS promoted cell apoptosis by activating the p38-MAPK signaling pathway and oxidative stress in vitro. In addition, analysis of the fecal microbiome and serum metabolomics revealed that exposure to TCS may cause gut microbiota disruption and metabolic abnormalities in F1 female mice. In conclusion, long-term low-dose TCS exposure may induce primary ovarian insufficiency phenotype in F1 female mice via inducing cell apoptosis and disrupting gut microbiota and metabolism.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.