Karim Zuhra, Maria Petrosino, Lucia Janickova, Jovan Petric, Kelly Ascenção, Thibaut Vignane, Moustafa Khalaf, Thilo M. Philipp, Stella Ravani, Abhishek Anand, Vanessa Martins, Sidneia Santos, Serkan Erdemir, Sait Malkondu, Barbara Sitek, Taha Kelestemur, Anna Kieronska-Rudek, Tomas Majtan, Luis Filgueira, Darko Maric, Stefan Chlopicki, David Hoogewijs, György Haskó, Andreas Papapetropoulos, Brian A. Logue, Gerry R. Boss, Milos R. Filipovic, Csaba Szabo
{"title":"Regulation of mammalian cellular metabolism by endogenous cyanide production","authors":"Karim Zuhra, Maria Petrosino, Lucia Janickova, Jovan Petric, Kelly Ascenção, Thibaut Vignane, Moustafa Khalaf, Thilo M. Philipp, Stella Ravani, Abhishek Anand, Vanessa Martins, Sidneia Santos, Serkan Erdemir, Sait Malkondu, Barbara Sitek, Taha Kelestemur, Anna Kieronska-Rudek, Tomas Majtan, Luis Filgueira, Darko Maric, Stefan Chlopicki, David Hoogewijs, György Haskó, Andreas Papapetropoulos, Brian A. Logue, Gerry R. Boss, Milos R. Filipovic, Csaba Szabo","doi":"10.1038/s42255-025-01225-w","DOIUrl":null,"url":null,"abstract":"<p>Small, gaseous molecules such as nitric oxide, carbon monoxide and hydrogen sulfide are produced as signalling molecules in mammalian cells. Here, we show that low concentrations of cyanide are generated endogenously in various mammalian tissues and cells. We detect cyanide in several cellular compartments of human cells and in various tissues and the blood of mice. Cyanide production is stimulated by glycine, occurs at the low pH of lysosomes and requires peroxidase activity. When generated at a specific rate, cyanide exerts stimulatory effects on mitochondrial bioenergetics, cell metabolism and cell proliferation, but impairs cellular bioenergetics at high concentrations. Cyanide can modify cysteine residues via protein <i>S</i>-cyanylation, which is detectable basally in cells and mice, and increases in response to glycine. Low-dose cyanide supplementation exhibits cytoprotective effects in hypoxia and reoxygenation models in vitro and in vivo. Conversely, pathologically elevated cyanide production in nonketotic hyperglycinaemia is detrimental to cells. Our findings indicate that cyanide should be considered part of the same group of endogenous mammalian regulatory gasotransmitters as nitric oxide, carbon monoxide and hydrogen sulfide.</p>","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"38 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s42255-025-01225-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Small, gaseous molecules such as nitric oxide, carbon monoxide and hydrogen sulfide are produced as signalling molecules in mammalian cells. Here, we show that low concentrations of cyanide are generated endogenously in various mammalian tissues and cells. We detect cyanide in several cellular compartments of human cells and in various tissues and the blood of mice. Cyanide production is stimulated by glycine, occurs at the low pH of lysosomes and requires peroxidase activity. When generated at a specific rate, cyanide exerts stimulatory effects on mitochondrial bioenergetics, cell metabolism and cell proliferation, but impairs cellular bioenergetics at high concentrations. Cyanide can modify cysteine residues via protein S-cyanylation, which is detectable basally in cells and mice, and increases in response to glycine. Low-dose cyanide supplementation exhibits cytoprotective effects in hypoxia and reoxygenation models in vitro and in vivo. Conversely, pathologically elevated cyanide production in nonketotic hyperglycinaemia is detrimental to cells. Our findings indicate that cyanide should be considered part of the same group of endogenous mammalian regulatory gasotransmitters as nitric oxide, carbon monoxide and hydrogen sulfide.
期刊介绍:
Nature Metabolism is a peer-reviewed scientific journal that covers a broad range of topics in metabolism research. It aims to advance the understanding of metabolic and homeostatic processes at a cellular and physiological level. The journal publishes research from various fields, including fundamental cell biology, basic biomedical and translational research, and integrative physiology. It focuses on how cellular metabolism affects cellular function, the physiology and homeostasis of organs and tissues, and the regulation of organismal energy homeostasis. It also investigates the molecular pathophysiology of metabolic diseases such as diabetes and obesity, as well as their treatment. Nature Metabolism follows the standards of other Nature-branded journals, with a dedicated team of professional editors, rigorous peer-review process, high standards of copy-editing and production, swift publication, and editorial independence. The journal has a high impact factor, has a certain influence in the international area, and is deeply concerned and cited by the majority of scholars.