Hydrological isolation accelerates algal blooms in floodplain lakes: biomarker evidence from Dongting Lake, China and its satellite lake

IF 11.4 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Water Research Pub Date : 2025-03-03 DOI:10.1016/j.watres.2025.123430
Linghan Zeng, Virginia N. Panizzo, Zekun Wang, Xianyu Huang, Xu Chen, Suzanne McGowan
{"title":"Hydrological isolation accelerates algal blooms in floodplain lakes: biomarker evidence from Dongting Lake, China and its satellite lake","authors":"Linghan Zeng, Virginia N. Panizzo, Zekun Wang, Xianyu Huang, Xu Chen, Suzanne McGowan","doi":"10.1016/j.watres.2025.123430","DOIUrl":null,"url":null,"abstract":"Hydrological disconnection from main channels (either via natural siltation or due to construction of hydrological infrastructures) is modifying biogeochemical cycling in river-floodplain systems. Knowledge on how this process influences phytoplankton composition and harmful algal blooms (HABs) in floodplain lakes is quite scant due to the lack of long-term water quality monitoring and the concurrent influence of multiple drivers of change. Here, chlorophyll and carotenoid pigment biomarkers from dated sediment cores were analyzed from Dongting Lake (China's second largest freshwater lake) and one of its satellite lakes (Donghu) in the Yangtze floodplain, to evaluate the long-term influence of hydrological isolation on algal community composition and HABs. The results showed that pigment concentrations and the ratio of canthaxanthin/diatoxanthin (which reflects the relative abundance of cyanobacteria to diatoms) increased after the 1910s in Donghu Lake, when it was separated from Dongting Lake due to siltation. In contrast, significant increases in pigments started from the 1980s in Dongting Lake. Variance partitioning analysis revealed that the combined influence of hydrology, temperature and anthropogenic pollutants explained the largest proportion of variance (33.4%) in the pigment assemblages in Donghu Lake, followed by the joint effects of anthropogeny pollutants and hydrology (23.6%) and the sole effects of anthropogenic pollutants (14.9%) and hydrology (11.2%). In Dongting Lake, anthropogenic pollutants explained 24.5% of the variance in pigment assemblages solely, followed by the additive effects of anthropogenic pollutants and temperature (17.8%). These long-term analyses therefore demonstrate that, in combination with anthropogenic pollutants and warming, hydrological isolation from the main channel may stimulate algal production and the prevalence of cyanobacteria, whereas free hydrological connection with the Yangtze main channel seems to alleviate such HABs in these Yangtze floodplain lakes.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"5 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.123430","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrological disconnection from main channels (either via natural siltation or due to construction of hydrological infrastructures) is modifying biogeochemical cycling in river-floodplain systems. Knowledge on how this process influences phytoplankton composition and harmful algal blooms (HABs) in floodplain lakes is quite scant due to the lack of long-term water quality monitoring and the concurrent influence of multiple drivers of change. Here, chlorophyll and carotenoid pigment biomarkers from dated sediment cores were analyzed from Dongting Lake (China's second largest freshwater lake) and one of its satellite lakes (Donghu) in the Yangtze floodplain, to evaluate the long-term influence of hydrological isolation on algal community composition and HABs. The results showed that pigment concentrations and the ratio of canthaxanthin/diatoxanthin (which reflects the relative abundance of cyanobacteria to diatoms) increased after the 1910s in Donghu Lake, when it was separated from Dongting Lake due to siltation. In contrast, significant increases in pigments started from the 1980s in Dongting Lake. Variance partitioning analysis revealed that the combined influence of hydrology, temperature and anthropogenic pollutants explained the largest proportion of variance (33.4%) in the pigment assemblages in Donghu Lake, followed by the joint effects of anthropogeny pollutants and hydrology (23.6%) and the sole effects of anthropogenic pollutants (14.9%) and hydrology (11.2%). In Dongting Lake, anthropogenic pollutants explained 24.5% of the variance in pigment assemblages solely, followed by the additive effects of anthropogenic pollutants and temperature (17.8%). These long-term analyses therefore demonstrate that, in combination with anthropogenic pollutants and warming, hydrological isolation from the main channel may stimulate algal production and the prevalence of cyanobacteria, whereas free hydrological connection with the Yangtze main channel seems to alleviate such HABs in these Yangtze floodplain lakes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Research
Water Research 环境科学-工程:环境
CiteScore
20.80
自引率
9.40%
发文量
1307
审稿时长
38 days
期刊介绍: Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include: •Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management; •Urban hydrology including sewer systems, stormwater management, and green infrastructure; •Drinking water treatment and distribution; •Potable and non-potable water reuse; •Sanitation, public health, and risk assessment; •Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions; •Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment; •Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution; •Environmental restoration, linked to surface water, groundwater and groundwater remediation; •Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts; •Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle; •Socio-economic, policy, and regulations studies.
期刊最新文献
Hydrological isolation accelerates algal blooms in floodplain lakes: biomarker evidence from Dongting Lake, China and its satellite lake Impact of long-term and short-term magnesium hydroxide dosing on transformation of chemical biomarkers in the sewer systems Groundwater pollution management with source remediation and composite geomembrane cut-off wall: an analytical model and field investigation Transport and transformation of colloidal and particulate mercury in contaminated watershed Organic ultraviolet filters (OUVF) in freshwater bathing areas: necessary sunscreen protection versus environmental threat
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1