Numerical Study of Near-Field Radionuclides Dispersion Around Barakah Power Plant During Postulated Accidental Release Scenarios

IF 2.6 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES Arabian Journal for Science and Engineering Pub Date : 2024-11-25 DOI:10.1007/s13369-024-09734-8
Fatema Ali Almazrouei, Yacine Addad, Peter Rodgers
{"title":"Numerical Study of Near-Field Radionuclides Dispersion Around Barakah Power Plant During Postulated Accidental Release Scenarios","authors":"Fatema Ali Almazrouei,&nbsp;Yacine Addad,&nbsp;Peter Rodgers","doi":"10.1007/s13369-024-09734-8","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the assessment of hazards arising from nuclear power plant incidents, informed by the Fukushima catastrophe. It evaluates the environmental impact of noble gases, such as iodine-131 releases, recognizing the limitations of current local computational tools, particularly in predicting near-field dispersion accurately. Utilizing computational fluid dynamics (CFD), this study validates this approach’s effectiveness in predicting pollutant dispersion around buildings. Among the five turbulence models tested, the Lag Elliptic Blending (EB) <i>k-ε</i> model emerges as the most suitable for simulating radioactive pollutant dispersion due to its superior performance in capturing flow dynamics. The findings underscore the inadequacy of traditional Gaussian plume models in accounting for the effects of buildings on dispersion patterns. Notably, simulations around the Barakah nuclear site located in the United Arab Emirates reveal the significant influence of buildings on the trajectory of radioactive pollutants from hypothetical cracks. Consequently, it advocates caution in relying solely on classical Gaussian plume models for evacuation plans, as they may overlook crucial flow patterns due to building presence, potentially leading to distorted assessments of gas distribution and deposition rates.</p></div>","PeriodicalId":54354,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"50 5","pages":"3539 - 3561"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13369-024-09734-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s13369-024-09734-8","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the assessment of hazards arising from nuclear power plant incidents, informed by the Fukushima catastrophe. It evaluates the environmental impact of noble gases, such as iodine-131 releases, recognizing the limitations of current local computational tools, particularly in predicting near-field dispersion accurately. Utilizing computational fluid dynamics (CFD), this study validates this approach’s effectiveness in predicting pollutant dispersion around buildings. Among the five turbulence models tested, the Lag Elliptic Blending (EB) k-ε model emerges as the most suitable for simulating radioactive pollutant dispersion due to its superior performance in capturing flow dynamics. The findings underscore the inadequacy of traditional Gaussian plume models in accounting for the effects of buildings on dispersion patterns. Notably, simulations around the Barakah nuclear site located in the United Arab Emirates reveal the significant influence of buildings on the trajectory of radioactive pollutants from hypothetical cracks. Consequently, it advocates caution in relying solely on classical Gaussian plume models for evacuation plans, as they may overlook crucial flow patterns due to building presence, potentially leading to distorted assessments of gas distribution and deposition rates.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Identification of TRADD as a potential biomarker in human uterine leiomyoma through iTRAQ based proteomic profiling
IF 3.3 3区 生物学Molecular and Cellular ProbesPub Date : 2017-12-01 DOI: 10.1016/j.mcp.2017.07.001
Yong Liu, Dan Lu, Jie Sheng, Lijing Luo, Weiyuan Zhang
来源期刊
Arabian Journal for Science and Engineering
Arabian Journal for Science and Engineering MULTIDISCIPLINARY SCIENCES-
CiteScore
5.70
自引率
3.40%
发文量
993
期刊介绍: King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE). AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.
期刊最新文献
Concluding Preface Preliminary Design of NDP-400: Economical Heat Generation for Efficient Desalination Effects of Combined Utilization of Active Cooler/Heater and Blade-Shaped Nanoparticles in Base Fluid for Performance Improvement of Thermoelectric Generator Mounted in Between Vented Cavities Lignocellulosic Biomass Pretreatment Methods and Application of Extracted Fractions CO2 Adsorption Using Graphene-Based Materials: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1