CO2 Adsorption Using Graphene-Based Materials: A Review

IF 2.6 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES Arabian Journal for Science and Engineering Pub Date : 2025-01-11 DOI:10.1007/s13369-025-09966-2
Ridhwan Lawal, Mozahar M. Hossain
{"title":"CO2 Adsorption Using Graphene-Based Materials: A Review","authors":"Ridhwan Lawal,&nbsp;Mozahar M. Hossain","doi":"10.1007/s13369-025-09966-2","DOIUrl":null,"url":null,"abstract":"<div><p>Rapidly increasing global atmospheric carbon dioxide (CO<sub>2</sub>) concentrations, a direct consequence of unabated fossil fuel combustion, pose a serious threat to our planet, fueling drastic global climate change. In the last ten years, there has been a surge in the development of chemical sorbents cycled through adsorption–desorption processes for CO<sub>2</sub> uptake, usually from low-concentration stationary sources like atmospheric air. The efficiency of these technologies, however, will depend on the development and optimization of promising next-generation materials tailored specifically for CO<sub>2</sub> capture. Graphene, a special distinctive material discovered about two decades ago, has the potential to propel the world even further toward a more sustainable future goal, for our largely fossil fuel-dependent economies. Graphene has a single-atom-thick sheet of sp<sup>2</sup>-hybridized carbon atoms causing it to have exceptional and tuneable properties. These have made graphene the most widely studied nanomaterial of the twenty first century. This review provides a comprehensive overview of the graphene-based materials for CO<sub>2</sub> capture/conversion. The review commences by exploring the synthesis techniques for graphene and the addition of dopants to tune its properties for targeted CO<sub>2</sub> capture applications. Furthermore, the review discusses graphene derivatives for CO<sub>2</sub> capture applications. Despite the immense potential, the practical implementation of graphene-based materials for direct air capture (DAC) will further exploration and development. Notably, engineering efficient graphene-air interfacial contact is paramount to expediting the deployment of DAC as a viable strategy for mitigating climate change. The review concludes by charting avenues for future research in environmental pollution mitigation through advanced material science and engineering approaches.</p></div>","PeriodicalId":54354,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"50 6","pages":"3699 - 3715"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s13369-025-09966-2","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Rapidly increasing global atmospheric carbon dioxide (CO2) concentrations, a direct consequence of unabated fossil fuel combustion, pose a serious threat to our planet, fueling drastic global climate change. In the last ten years, there has been a surge in the development of chemical sorbents cycled through adsorption–desorption processes for CO2 uptake, usually from low-concentration stationary sources like atmospheric air. The efficiency of these technologies, however, will depend on the development and optimization of promising next-generation materials tailored specifically for CO2 capture. Graphene, a special distinctive material discovered about two decades ago, has the potential to propel the world even further toward a more sustainable future goal, for our largely fossil fuel-dependent economies. Graphene has a single-atom-thick sheet of sp2-hybridized carbon atoms causing it to have exceptional and tuneable properties. These have made graphene the most widely studied nanomaterial of the twenty first century. This review provides a comprehensive overview of the graphene-based materials for CO2 capture/conversion. The review commences by exploring the synthesis techniques for graphene and the addition of dopants to tune its properties for targeted CO2 capture applications. Furthermore, the review discusses graphene derivatives for CO2 capture applications. Despite the immense potential, the practical implementation of graphene-based materials for direct air capture (DAC) will further exploration and development. Notably, engineering efficient graphene-air interfacial contact is paramount to expediting the deployment of DAC as a viable strategy for mitigating climate change. The review concludes by charting avenues for future research in environmental pollution mitigation through advanced material science and engineering approaches.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Arabian Journal for Science and Engineering
Arabian Journal for Science and Engineering MULTIDISCIPLINARY SCIENCES-
CiteScore
5.70
自引率
3.40%
发文量
993
期刊介绍: King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE). AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.
期刊最新文献
Concluding Preface Preliminary Design of NDP-400: Economical Heat Generation for Efficient Desalination Effects of Combined Utilization of Active Cooler/Heater and Blade-Shaped Nanoparticles in Base Fluid for Performance Improvement of Thermoelectric Generator Mounted in Between Vented Cavities Lignocellulosic Biomass Pretreatment Methods and Application of Extracted Fractions CO2 Adsorption Using Graphene-Based Materials: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1