Gauri, Poonam, Vijay Kumar, Sandeep Yadav, Deepak Dagur, Ravi Kant Choubey, S. Gaurav, Tejendra K. Gupta, Sunil Kumar
{"title":"Study and development of efficient and sustainable soil/compost-based earth batteries","authors":"Gauri, Poonam, Vijay Kumar, Sandeep Yadav, Deepak Dagur, Ravi Kant Choubey, S. Gaurav, Tejendra K. Gupta, Sunil Kumar","doi":"10.1007/s00339-025-08365-6","DOIUrl":null,"url":null,"abstract":"<div><p>The advancement of green energy batteries as alternative energy sources is crucial for addressing the issues posed by hazardous chemicals and their disposal, thereby mitigating environmental damage caused by direct or indirect impacts of pollution. Recently, novel Earth Battery Systems (EBS) have been investigated, utilizing various types of soils, compost, and electrodes, with water as a fixed electrolyte. In this study, EBS are characterized using multiple techniques, including Linear Sweep Voltammetry (LSV) and Electrochemical Impedance Spectroscopy (EIS). Our findings reveal that, compared to soil-based earth batteries - which exhibit high impedance values, the open-circuit voltage (<i>V</i><sub><i>oc</i></sub>) and short-circuit current (<i>I</i><sub><i>sc</i></sub>) are significantly enhanced in vermi-compost-based earth batteries fabricated using steel-201 as the anode and graphite as the cathode. Furthermore, the critical role of organic matter in promoting ion transport and enhancing the system’s overall efficiency is demonstrated through Cyclic Voltammetry (CV) and Ionic conductivity analysis. To ensure the sustainability of electrodes within the earth battery, corrosion studies are conducted using Tafel analysis. The results indicate that electrode corrosion can be effectively controlled by the strategic selection of corrosion inhibitors. Thus, this work lays the foundation for developing efficient, durable, and environmentally friendly EBS systems using soil and compost.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"131 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-025-08365-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The advancement of green energy batteries as alternative energy sources is crucial for addressing the issues posed by hazardous chemicals and their disposal, thereby mitigating environmental damage caused by direct or indirect impacts of pollution. Recently, novel Earth Battery Systems (EBS) have been investigated, utilizing various types of soils, compost, and electrodes, with water as a fixed electrolyte. In this study, EBS are characterized using multiple techniques, including Linear Sweep Voltammetry (LSV) and Electrochemical Impedance Spectroscopy (EIS). Our findings reveal that, compared to soil-based earth batteries - which exhibit high impedance values, the open-circuit voltage (Voc) and short-circuit current (Isc) are significantly enhanced in vermi-compost-based earth batteries fabricated using steel-201 as the anode and graphite as the cathode. Furthermore, the critical role of organic matter in promoting ion transport and enhancing the system’s overall efficiency is demonstrated through Cyclic Voltammetry (CV) and Ionic conductivity analysis. To ensure the sustainability of electrodes within the earth battery, corrosion studies are conducted using Tafel analysis. The results indicate that electrode corrosion can be effectively controlled by the strategic selection of corrosion inhibitors. Thus, this work lays the foundation for developing efficient, durable, and environmentally friendly EBS systems using soil and compost.
期刊介绍:
Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.