Heterogeneity of Layer 1 Interneurons in the Mouse Medial Prefrontal Cortex

IF 2.3 4区 医学 Q3 NEUROSCIENCES Journal of Comparative Neurology Pub Date : 2025-03-04 DOI:10.1002/cne.70030
Chen Shen, Wanpeng Cui, Wen-Cheng Xiong, Lin Mei
{"title":"Heterogeneity of Layer 1 Interneurons in the Mouse Medial Prefrontal Cortex","authors":"Chen Shen,&nbsp;Wanpeng Cui,&nbsp;Wen-Cheng Xiong,&nbsp;Lin Mei","doi":"10.1002/cne.70030","DOIUrl":null,"url":null,"abstract":"<p>Cortical Layer 1 (L1) acts as a critical relay for processing long-range inputs. GABAergic inhibitory interneurons (INs) in this layer (Layer 1 interneurons [L1INs]) function as inhibitory gates, regulating these inputs and modulating the activity of deeper cortical layers. However, their characteristics and circuits in the medial prefrontal cortex (mPFC) remain poorly understood. Using biocytin labeling, we identified three distinct morphological types of mPFC L1INs: neurogliaform cells (NGCs), elongated NGCs (eNGCs), and single-bouquet cell-like (SBC-like) cells. Whole-cell recordings revealed distinct firing patterns across these subtypes: NGCs and eNGCs predominantly exhibited late-spiking (LS) patterns, and SBC-like cells displayed a higher prevalence of non-LS (NLS) patterns. We observed both electrical and chemical connections among mPFC L1INs. Optogenetic activation of NDNF<sup>+</sup> L1INs demonstrated broad inhibitory effects on deeper layer neurons. The strength of inhibition on pyramidal neurons (PyNs) and INs displayed layer-specific preference. These findings highlight the functional diversity of L1INs in modulating mPFC circuits and suggest their potential role in supporting higher order cognitive functions.</p>","PeriodicalId":15552,"journal":{"name":"Journal of Comparative Neurology","volume":"533 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cne.70030","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Neurology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cne.70030","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cortical Layer 1 (L1) acts as a critical relay for processing long-range inputs. GABAergic inhibitory interneurons (INs) in this layer (Layer 1 interneurons [L1INs]) function as inhibitory gates, regulating these inputs and modulating the activity of deeper cortical layers. However, their characteristics and circuits in the medial prefrontal cortex (mPFC) remain poorly understood. Using biocytin labeling, we identified three distinct morphological types of mPFC L1INs: neurogliaform cells (NGCs), elongated NGCs (eNGCs), and single-bouquet cell-like (SBC-like) cells. Whole-cell recordings revealed distinct firing patterns across these subtypes: NGCs and eNGCs predominantly exhibited late-spiking (LS) patterns, and SBC-like cells displayed a higher prevalence of non-LS (NLS) patterns. We observed both electrical and chemical connections among mPFC L1INs. Optogenetic activation of NDNF+ L1INs demonstrated broad inhibitory effects on deeper layer neurons. The strength of inhibition on pyramidal neurons (PyNs) and INs displayed layer-specific preference. These findings highlight the functional diversity of L1INs in modulating mPFC circuits and suggest their potential role in supporting higher order cognitive functions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
8.00%
发文量
158
审稿时长
3-6 weeks
期刊介绍: Established in 1891, JCN is the oldest continually published basic neuroscience journal. Historically, as the name suggests, the journal focused on a comparison among species to uncover the intricacies of how the brain functions. In modern times, this research is called systems neuroscience where animal models are used to mimic core cognitive processes with the ultimate goal of understanding neural circuits and connections that give rise to behavioral patterns and different neural states. Research published in JCN covers all species from invertebrates to humans, and the reports inform the readers about the function and organization of nervous systems in species with an emphasis on the way that species adaptations inform about the function or organization of the nervous systems, rather than on their evolution per se. JCN publishes primary research articles and critical commentaries and review-type articles offering expert insight in to cutting edge research in the field of systems neuroscience; a complete list of contribution types is given in the Author Guidelines. For primary research contributions, only full-length investigative reports are desired; the journal does not accept short communications.
期刊最新文献
Issue Information Heterogeneity of Layer 1 Interneurons in the Mouse Medial Prefrontal Cortex Cover Image, Volume 533, Issue 3 NSF Workshop Report: Exploring Measurements and Interpretations of Intelligent Behaviors Across Animal Model Systems Microglial Engulfment of Multisensory Terminals in the Midbrain Inferior Colliculus During an Early Critical Period
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1