{"title":"Heterogeneity of Layer 1 Interneurons in the Mouse Medial Prefrontal Cortex","authors":"Chen Shen, Wanpeng Cui, Wen-Cheng Xiong, Lin Mei","doi":"10.1002/cne.70030","DOIUrl":null,"url":null,"abstract":"<p>Cortical Layer 1 (L1) acts as a critical relay for processing long-range inputs. GABAergic inhibitory interneurons (INs) in this layer (Layer 1 interneurons [L1INs]) function as inhibitory gates, regulating these inputs and modulating the activity of deeper cortical layers. However, their characteristics and circuits in the medial prefrontal cortex (mPFC) remain poorly understood. Using biocytin labeling, we identified three distinct morphological types of mPFC L1INs: neurogliaform cells (NGCs), elongated NGCs (eNGCs), and single-bouquet cell-like (SBC-like) cells. Whole-cell recordings revealed distinct firing patterns across these subtypes: NGCs and eNGCs predominantly exhibited late-spiking (LS) patterns, and SBC-like cells displayed a higher prevalence of non-LS (NLS) patterns. We observed both electrical and chemical connections among mPFC L1INs. Optogenetic activation of NDNF<sup>+</sup> L1INs demonstrated broad inhibitory effects on deeper layer neurons. The strength of inhibition on pyramidal neurons (PyNs) and INs displayed layer-specific preference. These findings highlight the functional diversity of L1INs in modulating mPFC circuits and suggest their potential role in supporting higher order cognitive functions.</p>","PeriodicalId":15552,"journal":{"name":"Journal of Comparative Neurology","volume":"533 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cne.70030","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Neurology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cne.70030","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cortical Layer 1 (L1) acts as a critical relay for processing long-range inputs. GABAergic inhibitory interneurons (INs) in this layer (Layer 1 interneurons [L1INs]) function as inhibitory gates, regulating these inputs and modulating the activity of deeper cortical layers. However, their characteristics and circuits in the medial prefrontal cortex (mPFC) remain poorly understood. Using biocytin labeling, we identified three distinct morphological types of mPFC L1INs: neurogliaform cells (NGCs), elongated NGCs (eNGCs), and single-bouquet cell-like (SBC-like) cells. Whole-cell recordings revealed distinct firing patterns across these subtypes: NGCs and eNGCs predominantly exhibited late-spiking (LS) patterns, and SBC-like cells displayed a higher prevalence of non-LS (NLS) patterns. We observed both electrical and chemical connections among mPFC L1INs. Optogenetic activation of NDNF+ L1INs demonstrated broad inhibitory effects on deeper layer neurons. The strength of inhibition on pyramidal neurons (PyNs) and INs displayed layer-specific preference. These findings highlight the functional diversity of L1INs in modulating mPFC circuits and suggest their potential role in supporting higher order cognitive functions.
期刊介绍:
Established in 1891, JCN is the oldest continually published basic neuroscience journal. Historically, as the name suggests, the journal focused on a comparison among species to uncover the intricacies of how the brain functions. In modern times, this research is called systems neuroscience where animal models are used to mimic core cognitive processes with the ultimate goal of understanding neural circuits and connections that give rise to behavioral patterns and different neural states.
Research published in JCN covers all species from invertebrates to humans, and the reports inform the readers about the function and organization of nervous systems in species with an emphasis on the way that species adaptations inform about the function or organization of the nervous systems, rather than on their evolution per se.
JCN publishes primary research articles and critical commentaries and review-type articles offering expert insight in to cutting edge research in the field of systems neuroscience; a complete list of contribution types is given in the Author Guidelines. For primary research contributions, only full-length investigative reports are desired; the journal does not accept short communications.