Joseph V. Gogola, Mary Kate Joyce, Susheel Vijayraghavan, George Barnum, Gregg Wildenberg
{"title":"NSF Workshop Report: Exploring Measurements and Interpretations of Intelligent Behaviors Across Animal Model Systems","authors":"Joseph V. Gogola, Mary Kate Joyce, Susheel Vijayraghavan, George Barnum, Gregg Wildenberg","doi":"10.1002/cne.70035","DOIUrl":null,"url":null,"abstract":"<p>Defining intelligence is a challenging and fraught task, but one that neuroscientists are repeatedly confronted with. A central goal of neuroscience is to understand how phenomena like intelligent behaviors emerge from nervous systems. This requires some determination of what defines intelligence and how to measure it. The challenge is multifaceted. For instance, as we begin to describe and understand the brain in increasingly specific physical terms (e.g., anatomy, cell types, activity patterns), we amplify an ever-growing divide in how we connect measurable properties of the brain to less tangible concepts like intelligence. As our appreciation for evolutionary diversity in neuroscience grows, we are further confronted with whether there can be a unifying theory of intelligence. The National Science Foundation (NSF) NeuroNex consortium recently gathered experts from multiple animal model systems to discuss intelligence across species. We summarize here the different perspectives offered by the consortium, with the goal of promoting thought and debate of this ancient question from a modern perspective, and asking whether defining intelligence is a useful exercise in neuroscience or an ill-posed and distracting question. We present data from the vantage points of humans, macaques, ferrets, crows, octopuses, bees, and flies, highlighting some of the noteworthy capabilities of each species within the context of each species’ ecological niche and how these may be challenged by climate change. We also include a remarkable example of convergent evolution between primates and crows in the circuit and molecular basis for working memory in these highly divergent animal species.</p>","PeriodicalId":15552,"journal":{"name":"Journal of Comparative Neurology","volume":"533 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cne.70035","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Neurology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cne.70035","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Defining intelligence is a challenging and fraught task, but one that neuroscientists are repeatedly confronted with. A central goal of neuroscience is to understand how phenomena like intelligent behaviors emerge from nervous systems. This requires some determination of what defines intelligence and how to measure it. The challenge is multifaceted. For instance, as we begin to describe and understand the brain in increasingly specific physical terms (e.g., anatomy, cell types, activity patterns), we amplify an ever-growing divide in how we connect measurable properties of the brain to less tangible concepts like intelligence. As our appreciation for evolutionary diversity in neuroscience grows, we are further confronted with whether there can be a unifying theory of intelligence. The National Science Foundation (NSF) NeuroNex consortium recently gathered experts from multiple animal model systems to discuss intelligence across species. We summarize here the different perspectives offered by the consortium, with the goal of promoting thought and debate of this ancient question from a modern perspective, and asking whether defining intelligence is a useful exercise in neuroscience or an ill-posed and distracting question. We present data from the vantage points of humans, macaques, ferrets, crows, octopuses, bees, and flies, highlighting some of the noteworthy capabilities of each species within the context of each species’ ecological niche and how these may be challenged by climate change. We also include a remarkable example of convergent evolution between primates and crows in the circuit and molecular basis for working memory in these highly divergent animal species.
期刊介绍:
Established in 1891, JCN is the oldest continually published basic neuroscience journal. Historically, as the name suggests, the journal focused on a comparison among species to uncover the intricacies of how the brain functions. In modern times, this research is called systems neuroscience where animal models are used to mimic core cognitive processes with the ultimate goal of understanding neural circuits and connections that give rise to behavioral patterns and different neural states.
Research published in JCN covers all species from invertebrates to humans, and the reports inform the readers about the function and organization of nervous systems in species with an emphasis on the way that species adaptations inform about the function or organization of the nervous systems, rather than on their evolution per se.
JCN publishes primary research articles and critical commentaries and review-type articles offering expert insight in to cutting edge research in the field of systems neuroscience; a complete list of contribution types is given in the Author Guidelines. For primary research contributions, only full-length investigative reports are desired; the journal does not accept short communications.