Cytotype and local adaptation drive phenotypic variation in two subspecies of big sagebrush (Artemisia tridentata)

IF 2.7 3区 环境科学与生态学 Q2 ECOLOGY Ecosphere Pub Date : 2025-03-03 DOI:10.1002/ecs2.70206
Spencer R. Roop, Keith Reinhardt, Ken Aho, Matthew J. Germino, Bryce A. Richardson
{"title":"Cytotype and local adaptation drive phenotypic variation in two subspecies of big sagebrush (Artemisia tridentata)","authors":"Spencer R. Roop,&nbsp;Keith Reinhardt,&nbsp;Ken Aho,&nbsp;Matthew J. Germino,&nbsp;Bryce A. Richardson","doi":"10.1002/ecs2.70206","DOIUrl":null,"url":null,"abstract":"<p>Big sagebrush (<i>Artemisia tridentata</i>) is a widespread and locally dominant shrub throughout many ecosystems in western North America. <i>A. tridentata</i> ssps. <i>tridentata</i> and <i>wyomingensis</i> are two subspecies whose populations occupy the warm-arid regions of the species range and whose trailing edge is threatened by climate change. Previous studies have presented conflicting results in relation to the genetic control of physiological variation in <i>A. tridentata</i>. Understanding how different genetic factors contribute to physiological variation can provide insight into how these two subspecies may respond to future climate change. To explore possible variation among and within two subspecies of <i>A. tridentata</i>, we measured physiological and morphological traits in <i>A</i>. <i>t</i>. <i>tridentata</i> and <i>A. t. wyomingensis</i> during mid-summer (July), seven years after establishment in a common garden. Contributions to trait variation were quantified for both genetic (subspecies and cytotype) and environmental (climate-of-origin) factors. Measurements revealed an unequal contribution to phenotypic variation by subspecies, cytotype, and climate-of-origin. Ploidy and climate-of-origin were more important than subspecies in driving phenotypic variation in <i>A. tridentata.</i> These findings suggest that <i>A. tridentata</i> has a highly plastic drought response, or that culling (mortality over time due to environmental factors) in the common garden over seven years has led to a lack of genetic diversity within the garden. Understanding what factors drive phenotypic expression in big sagebrush can provide better insight into how climate change may affect migration and extirpation and may aid in the effectiveness of restoration efforts.</p>","PeriodicalId":48930,"journal":{"name":"Ecosphere","volume":"16 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecs2.70206","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecosphere","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecs2.70206","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Big sagebrush (Artemisia tridentata) is a widespread and locally dominant shrub throughout many ecosystems in western North America. A. tridentata ssps. tridentata and wyomingensis are two subspecies whose populations occupy the warm-arid regions of the species range and whose trailing edge is threatened by climate change. Previous studies have presented conflicting results in relation to the genetic control of physiological variation in A. tridentata. Understanding how different genetic factors contribute to physiological variation can provide insight into how these two subspecies may respond to future climate change. To explore possible variation among and within two subspecies of A. tridentata, we measured physiological and morphological traits in A. t. tridentata and A. t. wyomingensis during mid-summer (July), seven years after establishment in a common garden. Contributions to trait variation were quantified for both genetic (subspecies and cytotype) and environmental (climate-of-origin) factors. Measurements revealed an unequal contribution to phenotypic variation by subspecies, cytotype, and climate-of-origin. Ploidy and climate-of-origin were more important than subspecies in driving phenotypic variation in A. tridentata. These findings suggest that A. tridentata has a highly plastic drought response, or that culling (mortality over time due to environmental factors) in the common garden over seven years has led to a lack of genetic diversity within the garden. Understanding what factors drive phenotypic expression in big sagebrush can provide better insight into how climate change may affect migration and extirpation and may aid in the effectiveness of restoration efforts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecosphere
Ecosphere ECOLOGY-
CiteScore
4.70
自引率
3.70%
发文量
378
审稿时长
15 weeks
期刊介绍: The scope of Ecosphere is as broad as the science of ecology itself. The journal welcomes submissions from all sub-disciplines of ecological science, as well as interdisciplinary studies relating to ecology. The journal''s goal is to provide a rapid-publication, online-only, open-access alternative to ESA''s other journals, while maintaining the rigorous standards of peer review for which ESA publications are renowned.
期刊最新文献
Elevated CO2 and drought modify plant–plant and plant–mycorrhizal interactions in two codominant grasses Amendments and seeding did not augment erosion control structure effectiveness in dry rangelands Historical fire regimes in whitebark pine ecosystems of west-central British Columbia Cover Image Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1