Elevated CO2 and drought modify plant–plant and plant–mycorrhizal interactions in two codominant grasses

IF 2.7 3区 环境科学与生态学 Q2 ECOLOGY Ecosphere Pub Date : 2025-03-07 DOI:10.1002/ecs2.70198
Smriti Pehim Limbu, Meghan L. Avolio
{"title":"Elevated CO2 and drought modify plant–plant and plant–mycorrhizal interactions in two codominant grasses","authors":"Smriti Pehim Limbu,&nbsp;Meghan L. Avolio","doi":"10.1002/ecs2.70198","DOIUrl":null,"url":null,"abstract":"<p>Plant–plant interactions play a critical role in shaping plant communities and influencing ecosystem services. However, how these interactions shift between positive (facilitation) and negative (competition) in response to environmental factors, including changes in symbiotic relationships with arbuscular mycorrhizal fungi (AMF), remains less understood. To address this knowledge gap, we conducted an experiment investigating the plant–plant interactions and AMF root colonization of two codominant grasses of tallgrass prairie, <i>Andropogon gerardii</i> and <i>Sorghastrum nutans</i>. We established three neighbor treatments (no neighbor, interspecific, and intraspecific interactions), and exposed the grasses to a combination of water and CO<sub>2</sub> treatments: drought with ambient CO<sub>2</sub>, well-watered with ambient CO<sub>2</sub>, drought with elevated CO<sub>2</sub>, and well-watered with elevated CO<sub>2</sub>. We hypothesized that elevated CO<sub>2</sub> would ameliorate the negative effect of drought on biomass and AMF root colonization in these grasses, and that competition would be most prominent under less stressful conditions (well-watered with ambient or elevated CO<sub>2</sub>), decreasing as stress increased (drought with ambient CO<sub>2</sub>), eventually leading to facilitation under more stressful conditions. Our findings demonstrated that elevated CO<sub>2</sub> ameliorated the negative effects of drought on the aboveground biomass of both grasses. Additionally, drought with ambient CO<sub>2</sub> treatment resulted in competition between plant individuals, which decreased as stress levels increased. Facilitation was observed under the least stressful condition (well-watered with elevated CO<sub>2</sub>) for belowground biomass. Interestingly, AMF root colonization was higher under drought with ambient CO<sub>2</sub> treatment and decreased under drought with elevated CO<sub>2</sub> treatment in the presence of a neighbor, suggesting a stress-dependent response in AMF colonization. Our study revealed a shift in plant–plant and plant–AMF interactions driven by the combined effects of drought and elevated CO<sub>2</sub>. These findings have important implications for understanding how codominant grasses and their symbiotic relationships with AMF may respond to changing climatic conditions in tallgrass prairie.</p>","PeriodicalId":48930,"journal":{"name":"Ecosphere","volume":"16 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecs2.70198","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecosphere","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecs2.70198","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plant–plant interactions play a critical role in shaping plant communities and influencing ecosystem services. However, how these interactions shift between positive (facilitation) and negative (competition) in response to environmental factors, including changes in symbiotic relationships with arbuscular mycorrhizal fungi (AMF), remains less understood. To address this knowledge gap, we conducted an experiment investigating the plant–plant interactions and AMF root colonization of two codominant grasses of tallgrass prairie, Andropogon gerardii and Sorghastrum nutans. We established three neighbor treatments (no neighbor, interspecific, and intraspecific interactions), and exposed the grasses to a combination of water and CO2 treatments: drought with ambient CO2, well-watered with ambient CO2, drought with elevated CO2, and well-watered with elevated CO2. We hypothesized that elevated CO2 would ameliorate the negative effect of drought on biomass and AMF root colonization in these grasses, and that competition would be most prominent under less stressful conditions (well-watered with ambient or elevated CO2), decreasing as stress increased (drought with ambient CO2), eventually leading to facilitation under more stressful conditions. Our findings demonstrated that elevated CO2 ameliorated the negative effects of drought on the aboveground biomass of both grasses. Additionally, drought with ambient CO2 treatment resulted in competition between plant individuals, which decreased as stress levels increased. Facilitation was observed under the least stressful condition (well-watered with elevated CO2) for belowground biomass. Interestingly, AMF root colonization was higher under drought with ambient CO2 treatment and decreased under drought with elevated CO2 treatment in the presence of a neighbor, suggesting a stress-dependent response in AMF colonization. Our study revealed a shift in plant–plant and plant–AMF interactions driven by the combined effects of drought and elevated CO2. These findings have important implications for understanding how codominant grasses and their symbiotic relationships with AMF may respond to changing climatic conditions in tallgrass prairie.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecosphere
Ecosphere ECOLOGY-
CiteScore
4.70
自引率
3.70%
发文量
378
审稿时长
15 weeks
期刊介绍: The scope of Ecosphere is as broad as the science of ecology itself. The journal welcomes submissions from all sub-disciplines of ecological science, as well as interdisciplinary studies relating to ecology. The journal''s goal is to provide a rapid-publication, online-only, open-access alternative to ESA''s other journals, while maintaining the rigorous standards of peer review for which ESA publications are renowned.
期刊最新文献
Elevated CO2 and drought modify plant–plant and plant–mycorrhizal interactions in two codominant grasses Amendments and seeding did not augment erosion control structure effectiveness in dry rangelands Historical fire regimes in whitebark pine ecosystems of west-central British Columbia Cover Image Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1