Recognizing Indonesian words based on visual cues of lip movement using deep learning

IF 5.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Measurement Pub Date : 2025-03-01 DOI:10.1016/j.measurement.2025.116968
Griffani Megiyanto Rahmatullah , Shanq-Jang Ruan , Lieber Po-Hung Li
{"title":"Recognizing Indonesian words based on visual cues of lip movement using deep learning","authors":"Griffani Megiyanto Rahmatullah ,&nbsp;Shanq-Jang Ruan ,&nbsp;Lieber Po-Hung Li","doi":"10.1016/j.measurement.2025.116968","DOIUrl":null,"url":null,"abstract":"<div><div>Lipreading is one of the techniques that can enhance speech perception. However, there are still limited studies of lipreading research focusing on low-resource languages, such as Indonesian. In this study, we introduce an instrument designed to generate lipreading datasets using CC BY video data available on YouTube called Lipreading Information Resource Assembler-Generator (LIRA-Gen). Using this instrument, we present the first Indonesian language lipreading dataset (IDLRW) containing over 48,000 videos with 100-word categories spoken by various persons in natural conditions. Also, we developed a deep learning architecture consisting of an Advanced Residual Network (ARN) using ResNet-34 incorporated with a Channel Spatial Attention (CSA) module, improved sequence modeling by fusing Bi-Gru with Mamba (BGM), an integrated word decision module, and fine-tuned hyperparameter. Our measurement shows that it reaches an accuracy of 60.51% on the IDLRW dataset and outperforms state-of-the-art lipreading models from another dataset even without implementing an additional learning strategy.</div></div>","PeriodicalId":18349,"journal":{"name":"Measurement","volume":"250 ","pages":"Article 116968"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263224125003276","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lipreading is one of the techniques that can enhance speech perception. However, there are still limited studies of lipreading research focusing on low-resource languages, such as Indonesian. In this study, we introduce an instrument designed to generate lipreading datasets using CC BY video data available on YouTube called Lipreading Information Resource Assembler-Generator (LIRA-Gen). Using this instrument, we present the first Indonesian language lipreading dataset (IDLRW) containing over 48,000 videos with 100-word categories spoken by various persons in natural conditions. Also, we developed a deep learning architecture consisting of an Advanced Residual Network (ARN) using ResNet-34 incorporated with a Channel Spatial Attention (CSA) module, improved sequence modeling by fusing Bi-Gru with Mamba (BGM), an integrated word decision module, and fine-tuned hyperparameter. Our measurement shows that it reaches an accuracy of 60.51% on the IDLRW dataset and outperforms state-of-the-art lipreading models from another dataset even without implementing an additional learning strategy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习根据嘴唇运动的视觉线索识别印尼语单词
唇读是能够增强语音感知能力的技术之一。然而,针对印尼语等低资源语言的唇读研究仍然有限。在本研究中,我们介绍了一种利用 YouTube 上的 CC BY 视频数据生成唇读数据集的工具,名为 "唇读信息资源汇编生成器"(LIRA-Gen)。利用该工具,我们生成了第一个印尼语唇读数据集(IDLRW),其中包含超过 48,000 个视频,由不同的人在自然条件下说出 100 个单词类别。此外,我们还开发了一种深度学习架构,该架构由使用 ResNet-34 的高级残差网络(ARN)和通道空间注意(CSA)模块组成,通过融合 Bi-Gru 和 Mamba(BGM)改进了序列建模,集成了单词判定模块和微调超参数。我们的测量结果表明,它在 IDLRW 数据集上的准确率达到了 60.51%,即使不采用额外的学习策略,也超过了另一个数据集上最先进的读唇模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Measurement
Measurement 工程技术-工程:综合
CiteScore
10.20
自引率
12.50%
发文量
1589
审稿时长
12.1 months
期刊介绍: Contributions are invited on novel achievements in all fields of measurement and instrumentation science and technology. Authors are encouraged to submit novel material, whose ultimate goal is an advancement in the state of the art of: measurement and metrology fundamentals, sensors, measurement instruments, measurement and estimation techniques, measurement data processing and fusion algorithms, evaluation procedures and methodologies for plants and industrial processes, performance analysis of systems, processes and algorithms, mathematical models for measurement-oriented purposes, distributed measurement systems in a connected world.
期刊最新文献
A wide range composite foam sensor based on parallel structure: Design, analysis and verification Research on evaluation method of in-tire sensor placement position for wheeled tractor intelligent tires Four-image-based 3D measurement approach employing Hilbert transform Radial image processing for phase extraction in rough-surface interferometry Corrosion damage detection and evaluation of coated steel components under multiple illumination conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1