120-Day perovskite solution stability via deprotonation and iodine reduction by a pyrazolone-based additive

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS Solar Energy Materials and Solar Cells Pub Date : 2025-03-04 DOI:10.1016/j.solmat.2025.113545
Tanakorn Kittikool , Ladda Srathongsian , Chaowaphat Seriwattanachai , Duangmanee Wongratanaphisan , Pipat Ruankham , Pasit Pakawatpanurut , Ratchadaporn Supruangnet , Hideki Nakajima , Pongsakorn Kanjanaboos
{"title":"120-Day perovskite solution stability via deprotonation and iodine reduction by a pyrazolone-based additive","authors":"Tanakorn Kittikool ,&nbsp;Ladda Srathongsian ,&nbsp;Chaowaphat Seriwattanachai ,&nbsp;Duangmanee Wongratanaphisan ,&nbsp;Pipat Ruankham ,&nbsp;Pasit Pakawatpanurut ,&nbsp;Ratchadaporn Supruangnet ,&nbsp;Hideki Nakajima ,&nbsp;Pongsakorn Kanjanaboos","doi":"10.1016/j.solmat.2025.113545","DOIUrl":null,"url":null,"abstract":"<div><div>Perovskite precursor solution undergoes degradation pathways such as deprotonation and iodide oxidation overtimes, which result in short shelf life. Such issue might not be significant for research labs where fresh solutions can be made every time, yet high solution stability improves workflow and reproducibility while reduces cost for actual manufacturing process. In this work, we identify the suitable and low-cost additive, 1-(4-sulfophenyl)-3-methyl-5-pyrazolone (SMP), to suppress undesirable reactions and prolong solution efficacy. To accelerate solution aging study, we carefully probed aging by-product quantities under room temperature over 120 days via nuclear magnetic resonance spectroscopy (NMR), establishing a standard heat protocol (60 °C) and collecting the database to assess acceleration factors by comparing by-product quantities with respect to starting organic cations. The aged perovskite solution with the SMP stabilizer exhibits 40-time-less by-products in comparison to the control solution that was aged under the same conditions. Perovskite solar cells (PSCs) from such solution with the SMP additive realize similar power conversion efficiencies (PCEs) to those from the fresh solution. Both the accelerated protocol and the long-term <sup>1</sup>H NMR tracking reveal over 120-day stability, marking SMP potential for PSC production.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"285 ","pages":"Article 113545"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825001461","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite precursor solution undergoes degradation pathways such as deprotonation and iodide oxidation overtimes, which result in short shelf life. Such issue might not be significant for research labs where fresh solutions can be made every time, yet high solution stability improves workflow and reproducibility while reduces cost for actual manufacturing process. In this work, we identify the suitable and low-cost additive, 1-(4-sulfophenyl)-3-methyl-5-pyrazolone (SMP), to suppress undesirable reactions and prolong solution efficacy. To accelerate solution aging study, we carefully probed aging by-product quantities under room temperature over 120 days via nuclear magnetic resonance spectroscopy (NMR), establishing a standard heat protocol (60 °C) and collecting the database to assess acceleration factors by comparing by-product quantities with respect to starting organic cations. The aged perovskite solution with the SMP stabilizer exhibits 40-time-less by-products in comparison to the control solution that was aged under the same conditions. Perovskite solar cells (PSCs) from such solution with the SMP additive realize similar power conversion efficiencies (PCEs) to those from the fresh solution. Both the accelerated protocol and the long-term 1H NMR tracking reveal over 120-day stability, marking SMP potential for PSC production.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
期刊最新文献
Integration of aluminum contacts in TOPCon solar cells: A pathway to reduce silver usage Physics-informed machine learning for TCO-layer thickness prediction and process analysis from multi-spectral images Study and mitigation of moisture-induced degradation in SHJ modules by modifying cell structure Experimental investigation on the combustion performance of single-glass and double-glazed photovoltaic modules Evaluation of environmental footprint: Life Cycle Assessment of Laboratory-scale thermal and chemical processes used for materials extraction from waste silicon solar panels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1