{"title":"Solar-photocatalytic degradation of paracetamol using Zeolite/Fe3O4/CuS/CuWO4 p-n heterojunction: Synthesis, characterization and its application","authors":"Alyaa Hussein Ali , Abeer I. Alwared","doi":"10.1016/j.solener.2025.113383","DOIUrl":null,"url":null,"abstract":"<div><div>In this research, a p-n heterojunction of CuS with CuWO<sub>4</sub>, Fe<sub>3</sub>O<sub>4</sub>, and zeolite was utilized to enhance the photocatalytic elimination of acetaminophen (ACT) from water. Acetaminophen, recognized as a persistent organic pollutant of growing environmental concern, was targeted for removal. A ternary nanocomposite of zeolite/Fe<sub>3</sub>O<sub>4</sub>/CuS/CuWO<sub>4</sub>, responsive to solar energy, was successfully synthesized and characterized using various techniques, such as XRD, FTIR, EDS, SEM, AFM, TEM, VSM, DRS, PL, BET, EDS mapping, and UV–vis spectroscopy. In this study, acetaminophen (ACT) photocatalytic removal from water was improved by employing a p-n heterojunction of CuS with CuWO<sub>4</sub>, Fe<sub>3</sub>O<sub>4</sub>, and zeolite. The study focused on studying important parameters such as ACT concentration, catalyst dosage, and pH to optimize photocatalysis conditions. Acetaminophen photocatalytic degradation efficiency of 95.76 % was reached under optimized conditions of 10 mg/L ACT concentration, pH 6.8, 2 g/L catalyst dosage, and 180 min of sun irradiation. The elimination percentage of total organic carbon was determined to be 68.43 %, which was an improvement over employing bare zeolite, CuS, and CuWO<sub>4</sub> individually. Furthermore, even after the sixth cycle of acetaminophen photodegradation, the synthesized composite demonstrated outstanding reusability, with a photodegradation efficiency of 61.46 %.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"290 ","pages":"Article 113383"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X2500146X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In this research, a p-n heterojunction of CuS with CuWO4, Fe3O4, and zeolite was utilized to enhance the photocatalytic elimination of acetaminophen (ACT) from water. Acetaminophen, recognized as a persistent organic pollutant of growing environmental concern, was targeted for removal. A ternary nanocomposite of zeolite/Fe3O4/CuS/CuWO4, responsive to solar energy, was successfully synthesized and characterized using various techniques, such as XRD, FTIR, EDS, SEM, AFM, TEM, VSM, DRS, PL, BET, EDS mapping, and UV–vis spectroscopy. In this study, acetaminophen (ACT) photocatalytic removal from water was improved by employing a p-n heterojunction of CuS with CuWO4, Fe3O4, and zeolite. The study focused on studying important parameters such as ACT concentration, catalyst dosage, and pH to optimize photocatalysis conditions. Acetaminophen photocatalytic degradation efficiency of 95.76 % was reached under optimized conditions of 10 mg/L ACT concentration, pH 6.8, 2 g/L catalyst dosage, and 180 min of sun irradiation. The elimination percentage of total organic carbon was determined to be 68.43 %, which was an improvement over employing bare zeolite, CuS, and CuWO4 individually. Furthermore, even after the sixth cycle of acetaminophen photodegradation, the synthesized composite demonstrated outstanding reusability, with a photodegradation efficiency of 61.46 %.
期刊介绍:
Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass