Transcriptome Analysis Revealed the Affecting Mechanism of Two Diets, Trash Fish or Compound Feed, on Flesh Quality of Largemouth Bass (Micropterus salmoides)

IF 1.9 4区 农林科学 Q2 FISHERIES Aquaculture Research Pub Date : 2025-03-03 DOI:10.1155/are/2563503
Min Feng, Xiaoying Xu, Zhifen Xu, Xiangjun Leng, Xiaoqin Li
{"title":"Transcriptome Analysis Revealed the Affecting Mechanism of Two Diets, Trash Fish or Compound Feed, on Flesh Quality of Largemouth Bass (Micropterus salmoides)","authors":"Min Feng,&nbsp;Xiaoying Xu,&nbsp;Zhifen Xu,&nbsp;Xiangjun Leng,&nbsp;Xiaoqin Li","doi":"10.1155/are/2563503","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This study revealed the affecting mechanism of trash fish (TF) and compound feed (CF) on the flesh quality of largemouth bass (<i>Micropterus salmoides</i>) based on muscle transcriptome. Largemouth bass weighing 75.0 ± 0.1 g were given TF or CF for a period of 12 weeks. The CF group presented significantly higher feed efficiency (FE) than the TF group (<i>p</i> &lt; 0.05), while there was no significant difference in specific growth rate (SGR) between the two groups (<i>p</i> &gt; 0.05). A total of 604 differentially expressed genes (DEGs) meeting the significance criteria of <i>p</i>-value &lt; 0.05 and |log2foldchange| &gt; 1 were identified in the muscle transcriptome analysis. Compared to the TF group, 145 DEGs were downregulated, and 459 DEGs were upregulated in the CF group. Enrichment analysis of Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways revealed significant enrichment of 401 GO terms and 13 pathways, respectively. In the CF group, there was a notable increase in gene expression in pathways such as arachidonic acid (AA) metabolism, protein processing in the endoplasmic reticulum, cholesterol metabolism, MAPK, and focal adhesion, while there was a decrease in pathways like purine metabolism, apoptosis, glycolysis/gluconeogenesis, and PPAR signaling. Real-time fluorescence quantitative PCR results indicated decreased expression of <i>tni</i> (troponin I, fast skeletal muscle-like) and increased expression of <i>stni</i> (troponin I, slow skeletal muscle-like), <i>ftni</i> (troponin I, fast skeletal muscle), <i>mustn1b</i> (musculoskeletal, embryonic nuclear protein 1b), <i>actn2b</i> (alpha-actinin−2), and <i>hspb1</i> (heat shock protein [HSP] beta 1) in the CF group compared to the TF group. Overall, according to transcriptomics, replacing TF with CF altered the gene expression related to meat and the associated signaling pathways, leading to the meat quality improvement for largemouth bass.</p>\n </div>","PeriodicalId":8104,"journal":{"name":"Aquaculture Research","volume":"2025 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/are/2563503","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Research","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/are/2563503","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

Abstract

This study revealed the affecting mechanism of trash fish (TF) and compound feed (CF) on the flesh quality of largemouth bass (Micropterus salmoides) based on muscle transcriptome. Largemouth bass weighing 75.0 ± 0.1 g were given TF or CF for a period of 12 weeks. The CF group presented significantly higher feed efficiency (FE) than the TF group (p < 0.05), while there was no significant difference in specific growth rate (SGR) between the two groups (p > 0.05). A total of 604 differentially expressed genes (DEGs) meeting the significance criteria of p-value < 0.05 and |log2foldchange| > 1 were identified in the muscle transcriptome analysis. Compared to the TF group, 145 DEGs were downregulated, and 459 DEGs were upregulated in the CF group. Enrichment analysis of Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways revealed significant enrichment of 401 GO terms and 13 pathways, respectively. In the CF group, there was a notable increase in gene expression in pathways such as arachidonic acid (AA) metabolism, protein processing in the endoplasmic reticulum, cholesterol metabolism, MAPK, and focal adhesion, while there was a decrease in pathways like purine metabolism, apoptosis, glycolysis/gluconeogenesis, and PPAR signaling. Real-time fluorescence quantitative PCR results indicated decreased expression of tni (troponin I, fast skeletal muscle-like) and increased expression of stni (troponin I, slow skeletal muscle-like), ftni (troponin I, fast skeletal muscle), mustn1b (musculoskeletal, embryonic nuclear protein 1b), actn2b (alpha-actinin−2), and hspb1 (heat shock protein [HSP] beta 1) in the CF group compared to the TF group. Overall, according to transcriptomics, replacing TF with CF altered the gene expression related to meat and the associated signaling pathways, leading to the meat quality improvement for largemouth bass.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Aquaculture Research
Aquaculture Research 农林科学-渔业
CiteScore
4.60
自引率
5.00%
发文量
464
审稿时长
5.3 months
期刊介绍: International in perspective, Aquaculture Research is published 12 times a year and specifically addresses research and reference needs of all working and studying within the many varied areas of aquaculture. The Journal regularly publishes papers on applied or scientific research relevant to freshwater, brackish, and marine aquaculture. It covers all aquatic organisms, floristic and faunistic, related directly or indirectly to human consumption. The journal also includes review articles, short communications and technical papers. Young scientists are particularly encouraged to submit short communications based on their own research.
期刊最新文献
Effects of Glycine Supplementation on Growth Performance, Antioxidant Activity, Immunity, and Muscle Tissue Structure of Whiteleg Shrimp (Litopenaeus vannamei) Under Fermented Soybean Meal Substitution Influence of Physical Activity and Nutritional Limitation on Amino Acid, Fatty Acid Metabolism, and Biochemical Responses in Juvenile Rainbow Trout (Oncorhynchus mykiss, Walbaum, 1792) Transcriptome Analysis Revealed the Affecting Mechanism of Two Diets, Trash Fish or Compound Feed, on Flesh Quality of Largemouth Bass (Micropterus salmoides) Synbiotic Supplementation Boosts Growth, Gut Health, and Immunity in Asian Fossil Catfish (Heteropneustes fossilis) Green Boost for Nile Tilapia, Oreochromis niloticus: Unveiling the Multifaceted Effects of Chenopodium album Leaves Powder on Growth, Hematology, Antioxidant Defense, Nonspecific Immunity and Tolerance Against Aeromonas hydrophila
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1