Nikunj Goel, Andrew M. Liebhold, Cleo Bertelsmeier, Mevin B. Hooten, Kirill S. Korolev, Timothy H. Keitt
{"title":"A mechanistic statistical approach to infer invasion characteristics of human-dispersed species with complex life cycle","authors":"Nikunj Goel, Andrew M. Liebhold, Cleo Bertelsmeier, Mevin B. Hooten, Kirill S. Korolev, Timothy H. Keitt","doi":"10.1002/ecm.70003","DOIUrl":null,"url":null,"abstract":"<p>The rising introduction of invasive species through trade networks threatens biodiversity and ecosystem services. Yet, we have a limited understanding of how transportation networks determine spatiotemporal patterns of range expansion. This knowledge gap may stem from two reasons. First, current analytical models fail to integrate the invader's life-history dynamics with heterogeneity in human-mediated dispersal patterns. Second, classical statistical methods often fail to provide reliable estimates of model parameters, such as the time and place of species introduction and life-history characteristics, due to spatial biases in the presence-only records and lack of informative demographic data. To address these gaps, we first formulate an age-structured metapopulation model that uses a probability matrix to emulate human-mediated dispersal patterns. The model reveals that an invader spreads radially along the shortest network path, such that the inter-patch network distances decrease with increasing traffic volume and reproductive value of hitchhikers. Next, we propose a hierarchical Bayesian statistical method to estimate model parameters using presence-only data and prior demographic knowledge. To show the utility of the statistical approach, we analyze zebra mussel (<i>Dreissena polymorpha</i>) expansion in North America through the inland commercial shipping network. Our analysis suggests that zebra mussels might have been introduced before 1981, indicating a lag of 5 years between the time of introduction and first detection in late 1986. Furthermore, using our statistical model, we estimated a one in three chance that they were introduced near Kingsville (Ontario, Canada), where they were first reported. We also find that survival, fecundity, and dispersal during early life (1–2 years) play a critical role in determining the expansion success of these mollusks. These results underscore the importance of fusing prior scientific knowledge with observation and demographic processes in a Bayesian framework for conceptual and practical understanding of how invasive species spread by human agency.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"95 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.70003","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The rising introduction of invasive species through trade networks threatens biodiversity and ecosystem services. Yet, we have a limited understanding of how transportation networks determine spatiotemporal patterns of range expansion. This knowledge gap may stem from two reasons. First, current analytical models fail to integrate the invader's life-history dynamics with heterogeneity in human-mediated dispersal patterns. Second, classical statistical methods often fail to provide reliable estimates of model parameters, such as the time and place of species introduction and life-history characteristics, due to spatial biases in the presence-only records and lack of informative demographic data. To address these gaps, we first formulate an age-structured metapopulation model that uses a probability matrix to emulate human-mediated dispersal patterns. The model reveals that an invader spreads radially along the shortest network path, such that the inter-patch network distances decrease with increasing traffic volume and reproductive value of hitchhikers. Next, we propose a hierarchical Bayesian statistical method to estimate model parameters using presence-only data and prior demographic knowledge. To show the utility of the statistical approach, we analyze zebra mussel (Dreissena polymorpha) expansion in North America through the inland commercial shipping network. Our analysis suggests that zebra mussels might have been introduced before 1981, indicating a lag of 5 years between the time of introduction and first detection in late 1986. Furthermore, using our statistical model, we estimated a one in three chance that they were introduced near Kingsville (Ontario, Canada), where they were first reported. We also find that survival, fecundity, and dispersal during early life (1–2 years) play a critical role in determining the expansion success of these mollusks. These results underscore the importance of fusing prior scientific knowledge with observation and demographic processes in a Bayesian framework for conceptual and practical understanding of how invasive species spread by human agency.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.