Md Shahadat Hossain, Md Mahbubul Alam, Zhiwei Huang, Faeze Mousazadeh, Ronit Sarangi, Ebbing de Jong, Kavindu C Kolamunna, Albert L Adhya, James L Hougland, Atanu Acharya, Davoud Mozhdehi
{"title":"Scalable One-Pot Production of Geranylgeranylated Proteins in Engineered Prokaryotes.","authors":"Md Shahadat Hossain, Md Mahbubul Alam, Zhiwei Huang, Faeze Mousazadeh, Ronit Sarangi, Ebbing de Jong, Kavindu C Kolamunna, Albert L Adhya, James L Hougland, Atanu Acharya, Davoud Mozhdehi","doi":"10.1021/acs.bioconjchem.4c00493","DOIUrl":null,"url":null,"abstract":"<p><p>Geranylgeranylation is a critical post-translational modification essential for various cellular functions. However, current methods for synthesizing geranylgeranylated proteins are complex and costly, which hinders access to these proteins for both biophysical and biomaterials applications. Here, we present a method for the one-pot production of geranylgeranylated proteins in <i>Escherichia coli</i>. We engineered <i>E. coli</i> to express geranylgeranyl pyrophosphate synthase (GGS), an enzyme that catalyzes the production of geranylgeranyl pyrophosphate. By coexpressing GGS with a geranylgeranyltransferase, we achieved efficient geranylgeranylation of model protein substrates, including intrinsically disordered elastin-like polypeptides (ELPs) and globular proteins such as mCherry and the small GTPases RhoA and Rap1B. We examined the biophysical behavior of the resulting geranylgeranylated proteins and observed that this modification affects the phase-separation and nanoassembly of ELPs and lipid bilayer engagement of mCherry. Taken together, our method offers a scalable, versatile, and cost-effective strategy for producing geranylgeranylated proteins, paving the way for advances in biochemical research, therapeutic development, and biomaterial engineering.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.4c00493","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Geranylgeranylation is a critical post-translational modification essential for various cellular functions. However, current methods for synthesizing geranylgeranylated proteins are complex and costly, which hinders access to these proteins for both biophysical and biomaterials applications. Here, we present a method for the one-pot production of geranylgeranylated proteins in Escherichia coli. We engineered E. coli to express geranylgeranyl pyrophosphate synthase (GGS), an enzyme that catalyzes the production of geranylgeranyl pyrophosphate. By coexpressing GGS with a geranylgeranyltransferase, we achieved efficient geranylgeranylation of model protein substrates, including intrinsically disordered elastin-like polypeptides (ELPs) and globular proteins such as mCherry and the small GTPases RhoA and Rap1B. We examined the biophysical behavior of the resulting geranylgeranylated proteins and observed that this modification affects the phase-separation and nanoassembly of ELPs and lipid bilayer engagement of mCherry. Taken together, our method offers a scalable, versatile, and cost-effective strategy for producing geranylgeranylated proteins, paving the way for advances in biochemical research, therapeutic development, and biomaterial engineering.
期刊介绍:
Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.