{"title":"Narrow vessels - a hallmark of frost-adapted evergreen leaves.","authors":"A J Kowalski, T P Wyka","doi":"10.1111/plb.70005","DOIUrl":null,"url":null,"abstract":"<p><p>The freezing-induced formation of embolisms in xylem conduits presents one of the challenges faced by evergreen leaves in frost-experiencing regions. Given that the probability of permanent embolism formation is related to the conduit diameter, we hypothesized that diameters of the vessels in evergreen leaves should be smaller than in deciduous leaves. We used live botanical garden collections to sample leaves of 21 evergreen and 47 deciduous species originating from various temperate biotopes and representing a broad taxonomic diversity. We determined the diameters of the largest vessels in their petioles. After controlling for conductive path length, the vessels in evergreen leaves were significantly smaller than those in deciduous leaves. Our results suggest a selective advantage of vessel diameter reduction for the evergreen leaf habit in cold climates. This result recapitulates the contrast between deciduous and evergreen species previously reported for stems. Moreover, the strong scaling relationships of vessel diameter with distance to leaf tip found in both leaf forms suggest that evolutionary reduction in vessel diameter associated with the evergreen habit may necessitate leaf size reduction, consistent with the trend documented in other studies.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/plb.70005","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The freezing-induced formation of embolisms in xylem conduits presents one of the challenges faced by evergreen leaves in frost-experiencing regions. Given that the probability of permanent embolism formation is related to the conduit diameter, we hypothesized that diameters of the vessels in evergreen leaves should be smaller than in deciduous leaves. We used live botanical garden collections to sample leaves of 21 evergreen and 47 deciduous species originating from various temperate biotopes and representing a broad taxonomic diversity. We determined the diameters of the largest vessels in their petioles. After controlling for conductive path length, the vessels in evergreen leaves were significantly smaller than those in deciduous leaves. Our results suggest a selective advantage of vessel diameter reduction for the evergreen leaf habit in cold climates. This result recapitulates the contrast between deciduous and evergreen species previously reported for stems. Moreover, the strong scaling relationships of vessel diameter with distance to leaf tip found in both leaf forms suggest that evolutionary reduction in vessel diameter associated with the evergreen habit may necessitate leaf size reduction, consistent with the trend documented in other studies.
期刊介绍:
Plant Biology is an international journal of broad scope bringing together the different subdisciplines, such as physiology, molecular biology, cell biology, development, genetics, systematics, ecology, evolution, ecophysiology, plant-microbe interactions, and mycology.
Plant Biology publishes original problem-oriented full-length research papers, short research papers, and review articles. Discussion of hot topics and provocative opinion articles are published under the heading Acute Views. From a multidisciplinary perspective, Plant Biology will provide a platform for publication, information and debate, encompassing all areas which fall within the scope of plant science.