Maternal consumption of glycerol monolaurate optimizes milk fatty acid profile and enhances piglet gut health in association with G protein-coupled receptor 84 (GPR84) activation.

IF 6.1 1区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE Animal Nutrition Pub Date : 2024-12-31 eCollection Date: 2025-03-01 DOI:10.1016/j.aninu.2024.11.017
Liang Xiong, Zhijin Zhang, Shiqi Dong, Tongbin Lin, Xianhuai Yue, Fang Chen, Wutai Guan, Shihai Zhang
{"title":"Maternal consumption of glycerol monolaurate optimizes milk fatty acid profile and enhances piglet gut health in association with G protein-coupled receptor 84 (GPR84) activation.","authors":"Liang Xiong, Zhijin Zhang, Shiqi Dong, Tongbin Lin, Xianhuai Yue, Fang Chen, Wutai Guan, Shihai Zhang","doi":"10.1016/j.aninu.2024.11.017","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluated the effect of maternal glycerol monolaurate (GML) supplementation during late gestation and lactation on sow reproductive performance, transfer of immunity and redox status, milk fat and fatty acid profile, and fecal microbiota. Eighty multiparous sows (Landrace × Large white) were randomly allocated to two treatment groups (with or without 1000 mg/kg GML) with 40 replicates per treatment. The feeding experiment lasted from d 85 of gestation (G85) to d 23 of lactation (L23). The samples were collected on d 1 (L1) and 21 (L21) of lactation. Our results showed that maternal GML supplementation significantly increased litter weight (<i>P</i> = 0.002), average daily gain of piglets (<i>P</i> = 0.048), and sow average daily feed intake (<i>P</i> = 0.032). Compared with CON group, the concentrations of lauric acid (C12:0; <i>P</i> = 0.022), C16:0 (<i>P</i> = 0.001), and total saturated fatty acids (<i>P</i> = 0.006) in colostrum as well as C12:0 in L21 milk (<i>P</i> = 0.001) were higher in GML group. Besides, the concentrations of immunoglobulin A (IgA) and IgG in colostrum as well as sow and piglet plasma, the total antioxidant capacity and superoxide dismutase activity in sow colostrum were also significantly higher in the GML group (<i>P</i> < 0.05). Microbiome results showed that GML addition increased fecal microbial alpha diversity as well as the relative abundances of short chain fatty acids producing bacteria Ruminococcaceae and <i>Parabacteroides</i>; and decreased the harmful Proteobacteria of sows (<i>P</i> < 0.05). The Spearman analysis showed that the microbial biomarkers Prevotellaceae, Ruminococcaceae, and <i>Parabacteroides</i> were positively correlated with IgA and IgG of sow plasma and milk (<i>P</i> < 0.05). Besides, maternal GML addition up-regulated the relative protein expressions of proliferating cell nuclear antigen, cyclin D1, G protein-coupled receptor 84 (GPR84) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in the duodenum and jejunum of piglets. Collectively, current findings suggested that maternal GML supplementation enhanced piglet growth during lactation, which might be associated with improving milk fat and lauric acid contents, microbiota derived immunoglobulins transfer, and gut health through potential involvement of GPR84 and PI3K/Akt signaling pathway.</p>","PeriodicalId":8184,"journal":{"name":"Animal Nutrition","volume":"20 ","pages":"387-403"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11872655/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.aninu.2024.11.017","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluated the effect of maternal glycerol monolaurate (GML) supplementation during late gestation and lactation on sow reproductive performance, transfer of immunity and redox status, milk fat and fatty acid profile, and fecal microbiota. Eighty multiparous sows (Landrace × Large white) were randomly allocated to two treatment groups (with or without 1000 mg/kg GML) with 40 replicates per treatment. The feeding experiment lasted from d 85 of gestation (G85) to d 23 of lactation (L23). The samples were collected on d 1 (L1) and 21 (L21) of lactation. Our results showed that maternal GML supplementation significantly increased litter weight (P = 0.002), average daily gain of piglets (P = 0.048), and sow average daily feed intake (P = 0.032). Compared with CON group, the concentrations of lauric acid (C12:0; P = 0.022), C16:0 (P = 0.001), and total saturated fatty acids (P = 0.006) in colostrum as well as C12:0 in L21 milk (P = 0.001) were higher in GML group. Besides, the concentrations of immunoglobulin A (IgA) and IgG in colostrum as well as sow and piglet plasma, the total antioxidant capacity and superoxide dismutase activity in sow colostrum were also significantly higher in the GML group (P < 0.05). Microbiome results showed that GML addition increased fecal microbial alpha diversity as well as the relative abundances of short chain fatty acids producing bacteria Ruminococcaceae and Parabacteroides; and decreased the harmful Proteobacteria of sows (P < 0.05). The Spearman analysis showed that the microbial biomarkers Prevotellaceae, Ruminococcaceae, and Parabacteroides were positively correlated with IgA and IgG of sow plasma and milk (P < 0.05). Besides, maternal GML addition up-regulated the relative protein expressions of proliferating cell nuclear antigen, cyclin D1, G protein-coupled receptor 84 (GPR84) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in the duodenum and jejunum of piglets. Collectively, current findings suggested that maternal GML supplementation enhanced piglet growth during lactation, which might be associated with improving milk fat and lauric acid contents, microbiota derived immunoglobulins transfer, and gut health through potential involvement of GPR84 and PI3K/Akt signaling pathway.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Animal Nutrition
Animal Nutrition Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
7.40
自引率
3.20%
发文量
172
审稿时长
12 weeks
期刊介绍: Animal Nutrition encompasses the full gamut of animal nutritional sciences and reviews including, but not limited to, fundamental aspects of animal nutrition such as nutritional requirements, metabolic studies, body composition, energetics, immunology, neuroscience, microbiology, genetics and molecular and cell biology related to nutrition, and more applied aspects of animal nutrition, such as raw material evaluation, feed additives, nutritive value of novel ingredients and feed safety.
期刊最新文献
Impact of krill (Euphausia superba) meal on growth performance of aquatic animals: A meta-analysis and prospective directions Black soldier fly larvae oil can partially replace fish oil in the diet of the juvenile mud crab (Scylla paramamosain) Retraction notice to "L-Leucine stimulates glutamate dehydrogenase activity and Glutamate synthesis by regulating mTORC1/SIRT4 pathway in pig liver" [Animal Nutrition 4 (2018) 329-338]. Maternal consumption of glycerol monolaurate optimizes milk fatty acid profile and enhances piglet gut health in association with G protein-coupled receptor 84 (GPR84) activation. Bacillus pumilus 315 improves intestinal microbiota and barrier function to alleviate diarrhea of neonatal goats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1