Enhancing nutrient efficiency through optimizing protein levels in lambs: Involvement of gastrointestinal microbiota.

IF 6.1 1区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE Animal Nutrition Pub Date : 2024-11-29 eCollection Date: 2025-03-01 DOI:10.1016/j.aninu.2024.09.006
Zhibin Luo, Huimin Ou, Christopher S McSweeney, Zhiliang Tan, Jinzhen Jiao
{"title":"Enhancing nutrient efficiency through optimizing protein levels in lambs: Involvement of gastrointestinal microbiota.","authors":"Zhibin Luo, Huimin Ou, Christopher S McSweeney, Zhiliang Tan, Jinzhen Jiao","doi":"10.1016/j.aninu.2024.09.006","DOIUrl":null,"url":null,"abstract":"<p><p>Improving the nutrient utilization efficiency of ruminants is of utmost significance for both economic and environmental benefits. Optimizing dietary protein levels represents a key nutritional strategy to enhance ruminant growth performance and reduce nitrogen emissions. In a 63-day experiment, 24 healthy Hulunbuir lambs (initial weight 17.1 ± 2.0 kg, 2.5 months old) were subjected to three treatments: a low-protein diet (LP; crude protein of 78.4 g/kg dry matter [DM]), a medium-protein diet (MP; crude protein of 112.0 g/kg DM), and a high-protein diet (HP; crude protein of 145.6 g/kg DM), with 8 lambs in each treatment (4 males and 4 females). Lambs in the MP treatment presented greater daily weight gain and feed conversion ratio than those in the HP treatment (<i>P</i> < 0.05, quadratically). Compared with the LP treatment, the MP treatment resulted in greater crude protein digestibility (<i>P</i> < 0.001, quadratically) and acid detergent fiber digestibility (<i>P</i> = 0.022, quadratically). In the serum, the urea nitrogen level increased quadratically with increasing dietary protein levels (<i>P</i> < 0.001), while the LP treatment exerted the highest concentrations of glutamate, glycine, alanine, and histidine (<i>P</i> < 0.05, quadratically). The ammonia nitrogen concentrations in the rumen and colon increased quadratically with increase in dietary protein levels (<i>P</i> < 0.05). The HP treatment increased the molar concentrations of isobutyrate and isovalerate in the rumen and colon (<i>P</i> < 0.05, quadratically). In contrast, the LP treatment decreased the molar proportion of acetate (<i>P</i> = 0.007, quadratically) and increased the molar proportion of butyrate (<i>P</i> < 0.001, quadratically) in the colon. The microbial diversity and structure were significantly altered by dietary protein level intervention across all gastrointestinal regions. The rumen of the MP treatment was enriched with fiber-degrading bacteria <i>Fibrobacter</i>_<i>succeinogenes</i> and starch-degrading bacteria <i>Selenomonas_ruminantium</i>. The colon in the LP treatment harbored microbial biomarkers including <i>Escherichia</i> spp. and <i>Lactobacillus amylovorus</i>, and the colon in the MP treatment was characterized by the enrichment of <i>Solibacillus_cecembensis</i>. These findings suggest that the MP diet with a crude protein content of 112.0 g/kg DM improved the growth performance and nutrient efficiency of lambs, which was achieved via the involvement of the gastrointestinal microbiota.</p>","PeriodicalId":8184,"journal":{"name":"Animal Nutrition","volume":"20 ","pages":"332-341"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11872659/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.aninu.2024.09.006","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Improving the nutrient utilization efficiency of ruminants is of utmost significance for both economic and environmental benefits. Optimizing dietary protein levels represents a key nutritional strategy to enhance ruminant growth performance and reduce nitrogen emissions. In a 63-day experiment, 24 healthy Hulunbuir lambs (initial weight 17.1 ± 2.0 kg, 2.5 months old) were subjected to three treatments: a low-protein diet (LP; crude protein of 78.4 g/kg dry matter [DM]), a medium-protein diet (MP; crude protein of 112.0 g/kg DM), and a high-protein diet (HP; crude protein of 145.6 g/kg DM), with 8 lambs in each treatment (4 males and 4 females). Lambs in the MP treatment presented greater daily weight gain and feed conversion ratio than those in the HP treatment (P < 0.05, quadratically). Compared with the LP treatment, the MP treatment resulted in greater crude protein digestibility (P < 0.001, quadratically) and acid detergent fiber digestibility (P = 0.022, quadratically). In the serum, the urea nitrogen level increased quadratically with increasing dietary protein levels (P < 0.001), while the LP treatment exerted the highest concentrations of glutamate, glycine, alanine, and histidine (P < 0.05, quadratically). The ammonia nitrogen concentrations in the rumen and colon increased quadratically with increase in dietary protein levels (P < 0.05). The HP treatment increased the molar concentrations of isobutyrate and isovalerate in the rumen and colon (P < 0.05, quadratically). In contrast, the LP treatment decreased the molar proportion of acetate (P = 0.007, quadratically) and increased the molar proportion of butyrate (P < 0.001, quadratically) in the colon. The microbial diversity and structure were significantly altered by dietary protein level intervention across all gastrointestinal regions. The rumen of the MP treatment was enriched with fiber-degrading bacteria Fibrobacter_succeinogenes and starch-degrading bacteria Selenomonas_ruminantium. The colon in the LP treatment harbored microbial biomarkers including Escherichia spp. and Lactobacillus amylovorus, and the colon in the MP treatment was characterized by the enrichment of Solibacillus_cecembensis. These findings suggest that the MP diet with a crude protein content of 112.0 g/kg DM improved the growth performance and nutrient efficiency of lambs, which was achieved via the involvement of the gastrointestinal microbiota.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Animal Nutrition
Animal Nutrition Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
7.40
自引率
3.20%
发文量
172
审稿时长
12 weeks
期刊介绍: Animal Nutrition encompasses the full gamut of animal nutritional sciences and reviews including, but not limited to, fundamental aspects of animal nutrition such as nutritional requirements, metabolic studies, body composition, energetics, immunology, neuroscience, microbiology, genetics and molecular and cell biology related to nutrition, and more applied aspects of animal nutrition, such as raw material evaluation, feed additives, nutritive value of novel ingredients and feed safety.
期刊最新文献
Impact of krill (Euphausia superba) meal on growth performance of aquatic animals: A meta-analysis and prospective directions Black soldier fly larvae oil can partially replace fish oil in the diet of the juvenile mud crab (Scylla paramamosain) Retraction notice to "L-Leucine stimulates glutamate dehydrogenase activity and Glutamate synthesis by regulating mTORC1/SIRT4 pathway in pig liver" [Animal Nutrition 4 (2018) 329-338]. Maternal consumption of glycerol monolaurate optimizes milk fatty acid profile and enhances piglet gut health in association with G protein-coupled receptor 84 (GPR84) activation. Bacillus pumilus 315 improves intestinal microbiota and barrier function to alleviate diarrhea of neonatal goats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1