Telomere Maintenance-Related Genes are Essential for Prognosis in Breast Cancer.

IF 3.3 4区 医学 Q2 ONCOLOGY Breast Cancer : Targets and Therapy Pub Date : 2025-02-24 eCollection Date: 2025-01-01 DOI:10.2147/BCTT.S506783
Wei Huang, Wei Wang, Tuo-Zhou Dong
{"title":"Telomere Maintenance-Related Genes are Essential for Prognosis in Breast Cancer.","authors":"Wei Huang, Wei Wang, Tuo-Zhou Dong","doi":"10.2147/BCTT.S506783","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Telomere maintenance mechanism significantly impacts the metastasis, progression, and survival of breast cancer (BC) patients. This study aimed to investigate the role of telomere maintenance-related genes (TMRGs) in BC prognosis and to construct a related prognostic model.</p><p><strong>Methods: </strong>Differentially expressed genes were identified from the TCGA-BC cohort, and functional enrichment analysis was conducted. TMRGs were sourced from the literature and intersected with DEGs. Candidate genes were selected using machine learning algorithms, including Lasso Cox, Random Forest, and XGBoost. Multivariate Cox regression analysis was conducted to construct a prognostic model and identify hub genes. Subsequent analyses included survival analysis, gene set enrichment analysis (GSEA), immune infiltration analysis, and drug sensitivity analysis of the hub genes. Finally, in vitro experiments were conducted to validate the expression of the hub genes.</p><p><strong>Results: </strong>A total of 1329 differentially expressed TMRGs were analyzed, with 128 significantly associated with overall survival. Machine learning identified 7 prognosis-related TMRGs: MECP2, PCMT1, PFKL, PTMA, TAGLN2, TRMT5, and XRCC4. These genes were used to construct a prognostic model, with MECP2, PCMT1, PFKL, TAGLN2, and XRCC4 as harmful factors, while PTMA and TRMT5 were protective. The model demonstrated a significant prognostic value (AUC: 0.81, 0.72, 0.69 for 1-, 3-, and 5-year, respectively). Survival analysis confirmed the prognostic relevance of these genes, and GSEA highlighted their roles in oxidative phosphorylation, glycolysis, and PI3K/AKT/mTOR signaling.</p><p><strong>Conclusion: </strong>The study identified 7 key TMRGs with significant prognostic value in BC. The constructed model effectively stratifies patient risk, providing a foundation for targeted therapies and personalized treatment strategies.</p>","PeriodicalId":9106,"journal":{"name":"Breast Cancer : Targets and Therapy","volume":"17 ","pages":"225-239"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11869761/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast Cancer : Targets and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/BCTT.S506783","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Telomere maintenance mechanism significantly impacts the metastasis, progression, and survival of breast cancer (BC) patients. This study aimed to investigate the role of telomere maintenance-related genes (TMRGs) in BC prognosis and to construct a related prognostic model.

Methods: Differentially expressed genes were identified from the TCGA-BC cohort, and functional enrichment analysis was conducted. TMRGs were sourced from the literature and intersected with DEGs. Candidate genes were selected using machine learning algorithms, including Lasso Cox, Random Forest, and XGBoost. Multivariate Cox regression analysis was conducted to construct a prognostic model and identify hub genes. Subsequent analyses included survival analysis, gene set enrichment analysis (GSEA), immune infiltration analysis, and drug sensitivity analysis of the hub genes. Finally, in vitro experiments were conducted to validate the expression of the hub genes.

Results: A total of 1329 differentially expressed TMRGs were analyzed, with 128 significantly associated with overall survival. Machine learning identified 7 prognosis-related TMRGs: MECP2, PCMT1, PFKL, PTMA, TAGLN2, TRMT5, and XRCC4. These genes were used to construct a prognostic model, with MECP2, PCMT1, PFKL, TAGLN2, and XRCC4 as harmful factors, while PTMA and TRMT5 were protective. The model demonstrated a significant prognostic value (AUC: 0.81, 0.72, 0.69 for 1-, 3-, and 5-year, respectively). Survival analysis confirmed the prognostic relevance of these genes, and GSEA highlighted their roles in oxidative phosphorylation, glycolysis, and PI3K/AKT/mTOR signaling.

Conclusion: The study identified 7 key TMRGs with significant prognostic value in BC. The constructed model effectively stratifies patient risk, providing a foundation for targeted therapies and personalized treatment strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
40
审稿时长
16 weeks
期刊最新文献
Ultrasound-Guided Percutaneous Microwave Coagulation Studies on VX2 Rabbit Models for Breast Cancer Treatment and Ultrasound Imaging Assessment. Telomere Maintenance-Related Genes are Essential for Prognosis in Breast Cancer. Real-World Analysis of the Efficacy and Adverse Events of T-DM1 in Chinese Patients With HER2-Positive Breast Cancer. Tumor Microenvironment Modulation by Tumor-Associated Macrophages: Implications for Neoadjuvant Chemotherapy Response in Breast Cancer. Quality of Life in Breast Cancer Patients in Saudi Arabia: A Systematic Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1