Accelerated Simulation of Multi-Electrode Arrays Using Sparse and Low-Rank Matrix Techniques.

IF 4.4 2区 医学 Q2 ENGINEERING, BIOMEDICAL IEEE Transactions on Biomedical Engineering Pub Date : 2025-02-13 DOI:10.1109/TBME.2025.3541489
Nathan Jensen, Zhijie Charles Chen, Anna Kochnev Goldstein, Daniel Palanker
{"title":"Accelerated Simulation of Multi-Electrode Arrays Using Sparse and Low-Rank Matrix Techniques.","authors":"Nathan Jensen, Zhijie Charles Chen, Anna Kochnev Goldstein, Daniel Palanker","doi":"10.1109/TBME.2025.3541489","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Modeling of Multi-Electrode Arrays used in neural stimulation can be computationally challenging since it may involve incredibly dense circuits with millions of interconnected resistors, representing current pathways in an electrolyte (resistance matrix), coupled to nonlinear circuits of the stimulating pixels themselves. Here, we present a method for accelerating the modeling of such circuits with minimal error by using a sparse plus low-rank approximation of the resistance matrix.</p><p><strong>Methods: </strong>We prove that thresholding of the resistance matrix elements enables its sparsification with minimized error. This is accomplished with a sorting algorithm, implying efficient O (N log (N)) complexity. The eigenvalue-based low-rank compensation then helps achieve greater accuracy without significantly increasing the problem size.</p><p><strong>Results: </strong>Utilizing these matrix techniques, we reduced the computation time of the simulation of multi-electrode arrays by about 10-fold, while maintaining an average error of less than 0.3% in the current injected from each electrode. We also show a case where acceleration reaches at least 133 times with additional error in the range of 4%, demonstrating the ability of this algorithm to perform under extreme conditions.</p><p><strong>Conclusion: </strong>Critical improvements in the efficiency of simulations of the electric field generated by multi-electrode arrays presented here enable the computational modeling of high-fidelity neural implants with thousands of pixels, previously impossible.</p><p><strong>Significance: </strong>Computational acceleration techniques described in this manuscript were developed for simulation of high-resolution photovoltaic retinal prostheses, but they are also immediately applicable to any circuits involving dense connections between nodes, and, with modifications, more generally to any systems involving non-sparse matrices.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2025.3541489","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Modeling of Multi-Electrode Arrays used in neural stimulation can be computationally challenging since it may involve incredibly dense circuits with millions of interconnected resistors, representing current pathways in an electrolyte (resistance matrix), coupled to nonlinear circuits of the stimulating pixels themselves. Here, we present a method for accelerating the modeling of such circuits with minimal error by using a sparse plus low-rank approximation of the resistance matrix.

Methods: We prove that thresholding of the resistance matrix elements enables its sparsification with minimized error. This is accomplished with a sorting algorithm, implying efficient O (N log (N)) complexity. The eigenvalue-based low-rank compensation then helps achieve greater accuracy without significantly increasing the problem size.

Results: Utilizing these matrix techniques, we reduced the computation time of the simulation of multi-electrode arrays by about 10-fold, while maintaining an average error of less than 0.3% in the current injected from each electrode. We also show a case where acceleration reaches at least 133 times with additional error in the range of 4%, demonstrating the ability of this algorithm to perform under extreme conditions.

Conclusion: Critical improvements in the efficiency of simulations of the electric field generated by multi-electrode arrays presented here enable the computational modeling of high-fidelity neural implants with thousands of pixels, previously impossible.

Significance: Computational acceleration techniques described in this manuscript were developed for simulation of high-resolution photovoltaic retinal prostheses, but they are also immediately applicable to any circuits involving dense connections between nodes, and, with modifications, more generally to any systems involving non-sparse matrices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Biomedical Engineering
IEEE Transactions on Biomedical Engineering 工程技术-工程:生物医学
CiteScore
9.40
自引率
4.30%
发文量
880
审稿时长
2.5 months
期刊介绍: IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.
期刊最新文献
Real-Time 3D Instrument Tip Tracking Using 2D X-Ray Fluoroscopy With Vessel Deformation Correction Under Free Breathing. Robust Fast Inter-Bin Image Registration for Undersampled Coronary MRI Based on a Learned Motion Prior. ThermICA: Novel Approach for a Multivariate Analysis of Facial Thermal Responses. Perovskite Quantum Dot-Based Photovoltaic Biointerface for Photostimulation of Neurons. A Novel Computer-Assisted System for Long Bone Fracture Reduction With a Hexapod External Fixator.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1