Unsupervised Accuracy Estimation for Brain-Computer Interfaces Based on Selective Auditory Attention Decoding.

IF 4.4 2区 医学 Q2 ENGINEERING, BIOMEDICAL IEEE Transactions on Biomedical Engineering Pub Date : 2025-02-13 DOI:10.1109/TBME.2025.3542253
Miguel A Lopez-Gordo, Simon Geirnaert, Alexander Bertrand
{"title":"Unsupervised Accuracy Estimation for Brain-Computer Interfaces Based on Selective Auditory Attention Decoding.","authors":"Miguel A Lopez-Gordo, Simon Geirnaert, Alexander Bertrand","doi":"10.1109/TBME.2025.3542253","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Selective auditory attention decoding (AAD) algorithms process brain data such as electroencephalography to decode to which of multiple competing sound sources a person attends. Example use cases are neuro-steered hearing aids or communication via brain-computer interfaces (BCI). Recently, it has been shown that it is possible to train such AAD decoders based on stimulus reconstruction in an unsupervised setting, where no ground truth is available regarding which sound source is attended. In many practical scenarios, such ground-truth labels are absent, making it, moreover, difficult to quantify the accuracy of the decoders. In this paper, we aim to develop a completely unsupervised algorithm to estimate the accuracy of correlation-based AAD algorithms during a competing talker listening task.</p><p><strong>Methods: </strong>We use principles of digital communications by modeling the AAD decision system as a binary phase-shift keying channel with additive white gaussian noise.</p><p><strong>Results: </strong>We show that the proposed unsupervised performance estimation technique can accurately determine the AAD accuracy in a transparent-for-the-user way, for different amounts of training and estimation data and decision window lengths. Furthermore, since different applications demand different targeted accuracies, our approach can estimate the minimal amount of training required for any given target accuracy.</p><p><strong>Conclusion: </strong>Our proposed estimation technique accurately predicts the performance of a correlation-based AAD algorithm without access to ground-truth labels.</p><p><strong>Significance: </strong>In neuro-steered hearing aids, the accuracy estimates provided by our approach could support time-adaptive decoding, dynamic gain control, and neurofeedback. In BCIs, it could support a robust communication paradigm with accuracy feedback for caregivers.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2025.3542253","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Selective auditory attention decoding (AAD) algorithms process brain data such as electroencephalography to decode to which of multiple competing sound sources a person attends. Example use cases are neuro-steered hearing aids or communication via brain-computer interfaces (BCI). Recently, it has been shown that it is possible to train such AAD decoders based on stimulus reconstruction in an unsupervised setting, where no ground truth is available regarding which sound source is attended. In many practical scenarios, such ground-truth labels are absent, making it, moreover, difficult to quantify the accuracy of the decoders. In this paper, we aim to develop a completely unsupervised algorithm to estimate the accuracy of correlation-based AAD algorithms during a competing talker listening task.

Methods: We use principles of digital communications by modeling the AAD decision system as a binary phase-shift keying channel with additive white gaussian noise.

Results: We show that the proposed unsupervised performance estimation technique can accurately determine the AAD accuracy in a transparent-for-the-user way, for different amounts of training and estimation data and decision window lengths. Furthermore, since different applications demand different targeted accuracies, our approach can estimate the minimal amount of training required for any given target accuracy.

Conclusion: Our proposed estimation technique accurately predicts the performance of a correlation-based AAD algorithm without access to ground-truth labels.

Significance: In neuro-steered hearing aids, the accuracy estimates provided by our approach could support time-adaptive decoding, dynamic gain control, and neurofeedback. In BCIs, it could support a robust communication paradigm with accuracy feedback for caregivers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Biomedical Engineering
IEEE Transactions on Biomedical Engineering 工程技术-工程:生物医学
CiteScore
9.40
自引率
4.30%
发文量
880
审稿时长
2.5 months
期刊介绍: IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.
期刊最新文献
Real-Time 3D Instrument Tip Tracking Using 2D X-Ray Fluoroscopy With Vessel Deformation Correction Under Free Breathing. Robust Fast Inter-Bin Image Registration for Undersampled Coronary MRI Based on a Learned Motion Prior. ThermICA: Novel Approach for a Multivariate Analysis of Facial Thermal Responses. Perovskite Quantum Dot-Based Photovoltaic Biointerface for Photostimulation of Neurons. A Novel Computer-Assisted System for Long Bone Fracture Reduction With a Hexapod External Fixator.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1