Highly stable inverted perovskite solar cells with all-inorganic selective contact using iron-doped zinc oxide.

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL Journal of Chemical Physics Pub Date : 2025-03-07 DOI:10.1063/5.0246664
Long Wang, Yufang Li, Honglie Shen, Lei Wang, Qichen Zhao, Jinjie Zheng, Hechao Li, Zhihong Xie, Andi Chen, Sijia Miao, Haibin Huang
{"title":"Highly stable inverted perovskite solar cells with all-inorganic selective contact using iron-doped zinc oxide.","authors":"Long Wang, Yufang Li, Honglie Shen, Lei Wang, Qichen Zhao, Jinjie Zheng, Hechao Li, Zhihong Xie, Andi Chen, Sijia Miao, Haibin Huang","doi":"10.1063/5.0246664","DOIUrl":null,"url":null,"abstract":"<p><p>Perovskite solar cells (PSCs) have achieved remarkable performance advancements over the past decade. In inverted p-i-n PSCs, commonly utilized electron transport layers (ETL), such as C60 and PCBM, are associated with notable stability challenges and high production costs. This study reports on a novel and highly stable perovskite solar cell that employs iron-doped zinc oxide (FZO) nanoparticles as the ETL and nickel oxide (NiOx) as the hole transport layer, demonstrating a power conversion efficiency (PCE) of ∼12%. In comparison with PSCs that utilize zinc oxide (ZnO) as the ETL, those incorporating FZO demonstrated a maximum PCE enhancement of 18.3%. The incorporation of iron doping mitigates the basicity of the ZnO ETL, thereby reducing the deprotonation at the FZO/perovskite interface and enhancing the stability of the PSCs. The unpackaged FZO device maintained an initial PCE of 90% after 400 h at a relative humidity of 45% ± 5%. (2-(9H-carbazol-9-yl)ethyl)phosphonic acid and 2-phenylethylamine hydroiodide were used to passivate the NiOx/perovskite and perovskite/ZnO(FZO) interfaces, respectively, which further improved the PSC performance. Ultimately, FZO-based PSCs with a PCE of 13.65%, an open-circuit voltage (Voc) of 1.04 V, a short-circuit current density (Jsc) of 20.79, and a fill factor (FF) of 63.1% were obtained, and the PCE demonstrated a notable increase of over 35% compared to pristine ZnO-based devices. Results indicate that high device performance, low fabrication costs, and excellent stability can be attained through the use of simple chemically synthesized oxides as inorganic selective charge transport layers in PSCs.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 9","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0246664","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite solar cells (PSCs) have achieved remarkable performance advancements over the past decade. In inverted p-i-n PSCs, commonly utilized electron transport layers (ETL), such as C60 and PCBM, are associated with notable stability challenges and high production costs. This study reports on a novel and highly stable perovskite solar cell that employs iron-doped zinc oxide (FZO) nanoparticles as the ETL and nickel oxide (NiOx) as the hole transport layer, demonstrating a power conversion efficiency (PCE) of ∼12%. In comparison with PSCs that utilize zinc oxide (ZnO) as the ETL, those incorporating FZO demonstrated a maximum PCE enhancement of 18.3%. The incorporation of iron doping mitigates the basicity of the ZnO ETL, thereby reducing the deprotonation at the FZO/perovskite interface and enhancing the stability of the PSCs. The unpackaged FZO device maintained an initial PCE of 90% after 400 h at a relative humidity of 45% ± 5%. (2-(9H-carbazol-9-yl)ethyl)phosphonic acid and 2-phenylethylamine hydroiodide were used to passivate the NiOx/perovskite and perovskite/ZnO(FZO) interfaces, respectively, which further improved the PSC performance. Ultimately, FZO-based PSCs with a PCE of 13.65%, an open-circuit voltage (Voc) of 1.04 V, a short-circuit current density (Jsc) of 20.79, and a fill factor (FF) of 63.1% were obtained, and the PCE demonstrated a notable increase of over 35% compared to pristine ZnO-based devices. Results indicate that high device performance, low fabrication costs, and excellent stability can be attained through the use of simple chemically synthesized oxides as inorganic selective charge transport layers in PSCs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
期刊最新文献
Formation of magnesium clusters in superfluid helium nanodroplets. Highly stable inverted perovskite solar cells with all-inorganic selective contact using iron-doped zinc oxide. 27Al NMR spectroscopic and DFT computational study of the quadrupole coupling of aluminum in two polymorphs of the complex aluminum hydride CsAlH4. A new apparatus for gas-phase low temperature kinetics study: Kinetics measurement and product detection of the CH + propene reaction at 23 K. A new determination of group-modified pore size distribution of activated carbon from confined density distribution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1