Engineering a multivariate cobalt metal-organic framework for high photocatalytic activity: the impact of mixed ligands and metal incorporation in a visible light-driven heterogeneous photo-Fenton reaction for water treatment.
Noelia Rodríguez-Sánchez, Biswajit Bhattacharya, Franziska Emmerling, Carsten Prinz, Paula Prieto-Laria, A Rabdel Ruiz-Salvador, Menta Ballesteros
{"title":"Engineering a multivariate cobalt metal-organic framework for high photocatalytic activity: the impact of mixed ligands and metal incorporation in a visible light-driven heterogeneous photo-Fenton reaction for water treatment.","authors":"Noelia Rodríguez-Sánchez, Biswajit Bhattacharya, Franziska Emmerling, Carsten Prinz, Paula Prieto-Laria, A Rabdel Ruiz-Salvador, Menta Ballesteros","doi":"10.1039/d4na00954a","DOIUrl":null,"url":null,"abstract":"<p><p>Metal-organic frameworks (MOFs) have attracted increasing attention for the removal of organic pollutants in wastewater <i>via</i> photocatalysis. Here, we design a multivariate modification of ZIF-9 to tune its electronic properties for use in visible light photocatalysis. A controllable synthesis of ZIF-9 and its multivariate forms with the incorporation of copper and the 2-imidazolecarboxaldehyde (ica) ligand was carried out. The materials are tested for the removal of the model dye methylene blue (MB) by a heterogeneous photo-Fenton-like reaction at neutral pH and room temperature. Cu-ZIF-9-ica (UPO-3) shows high photocatalytic activity under both visible and ultraviolet A (UVA) light, achieving 94% MB degradation in 45 min, compared to 65% MB degradation in 120 min using bare ZIF-9. The study revealed a first-order rate constant of 0.0475 min<sup>-1</sup> for Cu-ZIF-9-ica compared to 0.0088 min<sup>-1</sup> for ZIF-9 under visible light. The improvement of the catalyst was clearly attributed to the co-incorporation of Cu and the ica ligand in the MOF, which reduces the band gap, in agreement with DFT calculations. Reproducibility and recyclability tests proved that Cu-ZIF-9-ica can be used for at least 3 cycles without a significant loss of efficiency, making it a promising material for the study and application of wastewater treatment.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868913/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4na00954a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Metal-organic frameworks (MOFs) have attracted increasing attention for the removal of organic pollutants in wastewater via photocatalysis. Here, we design a multivariate modification of ZIF-9 to tune its electronic properties for use in visible light photocatalysis. A controllable synthesis of ZIF-9 and its multivariate forms with the incorporation of copper and the 2-imidazolecarboxaldehyde (ica) ligand was carried out. The materials are tested for the removal of the model dye methylene blue (MB) by a heterogeneous photo-Fenton-like reaction at neutral pH and room temperature. Cu-ZIF-9-ica (UPO-3) shows high photocatalytic activity under both visible and ultraviolet A (UVA) light, achieving 94% MB degradation in 45 min, compared to 65% MB degradation in 120 min using bare ZIF-9. The study revealed a first-order rate constant of 0.0475 min-1 for Cu-ZIF-9-ica compared to 0.0088 min-1 for ZIF-9 under visible light. The improvement of the catalyst was clearly attributed to the co-incorporation of Cu and the ica ligand in the MOF, which reduces the band gap, in agreement with DFT calculations. Reproducibility and recyclability tests proved that Cu-ZIF-9-ica can be used for at least 3 cycles without a significant loss of efficiency, making it a promising material for the study and application of wastewater treatment.