Swin-Unet++: a study on phenotypic parameter analysis of cabbage seedling roots.

IF 4.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Plant Methods Pub Date : 2025-03-03 DOI:10.1186/s13007-025-01340-5
Hongda Li, Yue Zhao, Zeyang Bi, Peng Hao, Huarui Wu, Chunjiang Zhao
{"title":"Swin-Unet++: a study on phenotypic parameter analysis of cabbage seedling roots.","authors":"Hongda Li, Yue Zhao, Zeyang Bi, Peng Hao, Huarui Wu, Chunjiang Zhao","doi":"10.1186/s13007-025-01340-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>As an important economic crop, the growth status of the root system of cabbage directly affects its overall health and yield. To monitor the root growth status of cabbage seedlings during their growth period, this study proposes a new network architecture called Swin-Unet++. This architecture integrates the Swin-Transformer module and residual networks and uses attention mechanisms to replace traditional convolution operations for feature extraction. It also adopts the residual concept to fuse contextual information from different levels, addressing the issue of insufficient feature extraction for the thin and mesh-like roots of cabbage seedlings.</p><p><strong>Results: </strong>Compared with other backbone high-precision semantic segmentation networks, SwinUnet + + achieves superior segmentation results. The results show that the accuracy of Swin-Unet + + in root system segmentation tasks reached as high as 98.19%, with a model parameter of 60 M and an average response time of 29.5 ms. Compared with the classic Unet network, the mIoU increased by 1.08%, verifying that the Swin-Transformer and residual networks can accurately extract the fine-grained features of roots. Furthermore, when images after different semantic segmentations are compared to locate the root position through contours, Swin-Unet + + has the best positioning effect. On the basis of the root pixels obtained from semantic segmentation, the calculated maximum root length, extension width, and root thickness are compared with actual measurements. The resulting goodness of fit R² values are 94.82%, 94.43%, and 86.45%, respectively. Verifying the effectiveness of this network in extracting the phenotypic traits of cabbage seedling roots.</p><p><strong>Conclusions: </strong>The Swin-Unet + + framework developed in this study provides a new technique for the monitoring and analysis of cabbage root systems, ultimately leading to the development of an automated analysis platform that offers technical support for intelligent agriculture and efficient planting practices.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"21 1","pages":"30"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874442/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-025-01340-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: As an important economic crop, the growth status of the root system of cabbage directly affects its overall health and yield. To monitor the root growth status of cabbage seedlings during their growth period, this study proposes a new network architecture called Swin-Unet++. This architecture integrates the Swin-Transformer module and residual networks and uses attention mechanisms to replace traditional convolution operations for feature extraction. It also adopts the residual concept to fuse contextual information from different levels, addressing the issue of insufficient feature extraction for the thin and mesh-like roots of cabbage seedlings.

Results: Compared with other backbone high-precision semantic segmentation networks, SwinUnet + + achieves superior segmentation results. The results show that the accuracy of Swin-Unet + + in root system segmentation tasks reached as high as 98.19%, with a model parameter of 60 M and an average response time of 29.5 ms. Compared with the classic Unet network, the mIoU increased by 1.08%, verifying that the Swin-Transformer and residual networks can accurately extract the fine-grained features of roots. Furthermore, when images after different semantic segmentations are compared to locate the root position through contours, Swin-Unet + + has the best positioning effect. On the basis of the root pixels obtained from semantic segmentation, the calculated maximum root length, extension width, and root thickness are compared with actual measurements. The resulting goodness of fit R² values are 94.82%, 94.43%, and 86.45%, respectively. Verifying the effectiveness of this network in extracting the phenotypic traits of cabbage seedling roots.

Conclusions: The Swin-Unet + + framework developed in this study provides a new technique for the monitoring and analysis of cabbage root systems, ultimately leading to the development of an automated analysis platform that offers technical support for intelligent agriculture and efficient planting practices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Swin-Unet++:白菜幼苗根系表型参数分析研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Methods
Plant Methods 生物-植物科学
CiteScore
9.20
自引率
3.90%
发文量
121
审稿时长
2 months
期刊介绍: Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences. There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics. Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.
期刊最新文献
Swin-Unet++: a study on phenotypic parameter analysis of cabbage seedling roots. Rootrainertrons: a novel root phenotyping method used to identify genotypic variation in lettuce rooting. Vapor pressure deficit control and mechanical vibration techniques to induce self-pollination in strawberry flowers. A method for phenotyping lettuce volume and structure from 3D images. Estimation of chlorophyll content in rice canopy leaves using 3D radiative transfer modeling and unmanned aerial hyperspectral images.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1