Multi-dataset Collaborative Learning for Liver Tumor Segmentation.

Ziyuan Zhao, Renjun Cai, Kaixin Xu, Zhengji Liu, Xulei Yang, Jun Cheng, Cuntai Guan
{"title":"Multi-dataset Collaborative Learning for Liver Tumor Segmentation.","authors":"Ziyuan Zhao, Renjun Cai, Kaixin Xu, Zhengji Liu, Xulei Yang, Jun Cheng, Cuntai Guan","doi":"10.1109/EMBC53108.2024.10781844","DOIUrl":null,"url":null,"abstract":"<p><p>Automatic segmentation of biomedical images has emerged due to its potential in improving real-world clinical processes and has achieved great success in recent years thanks to the development of deep learning. However, it is the limited availability of certain modalities of datasets and the scarcity of labels that still present challenges. In this work, we propose a workflow of MRI liver and tumor segmentation methods utilizing external publicly available datasets. By employing pseudo-labeling, unpaired image-to-image translation, and self-ensemble learning, we improve the task performance from the nnU-Net baseline model with an average Dice score of 95.7% and 72.2%, and an average symmetric surface of 1.23 mm and 15.6 mm for the whole liver and the tumor, respectively, resulting in more robust and efficient segmentation. Our results demonstrate that the utilization of external datasets can significantly enhance liver tumor segmentation performance.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2024 ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC53108.2024.10781844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic segmentation of biomedical images has emerged due to its potential in improving real-world clinical processes and has achieved great success in recent years thanks to the development of deep learning. However, it is the limited availability of certain modalities of datasets and the scarcity of labels that still present challenges. In this work, we propose a workflow of MRI liver and tumor segmentation methods utilizing external publicly available datasets. By employing pseudo-labeling, unpaired image-to-image translation, and self-ensemble learning, we improve the task performance from the nnU-Net baseline model with an average Dice score of 95.7% and 72.2%, and an average symmetric surface of 1.23 mm and 15.6 mm for the whole liver and the tumor, respectively, resulting in more robust and efficient segmentation. Our results demonstrate that the utilization of external datasets can significantly enhance liver tumor segmentation performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物医学图像的自动分割因其在改善真实世界临床流程方面的潜力而兴起,近年来由于深度学习的发展而取得了巨大成功。然而,某些数据集模式的可用性有限以及标签的稀缺性仍然是目前面临的挑战。在这项工作中,我们提出了一种利用外部公开数据集进行核磁共振肝脏和肿瘤分割方法的工作流程。通过使用伪标签、非配对图像到图像平移和自组装学习,我们提高了 nnU-Net 基线模型的任务性能,全肝和肿瘤的平均 Dice 得分分别为 95.7% 和 72.2%,平均对称面分别为 1.23 mm 和 15.6 mm,从而实现了更稳健、更高效的分割。我们的研究结果表明,利用外部数据集可以显著提高肝脏肿瘤的分割性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
期刊最新文献
Multi-dataset Collaborative Learning for Liver Tumor Segmentation. A Modified Reference Scan Method for MR Image Inhomogeneity Correction. Muscle activation of lower limb during walking in elderly individuals with sarcopenia: A pilot study. A Multi-branch Attention-based Deep Learning Method for ALS Identification with sMRI Data. Narrowband-Enhanced Method for Improving Frequency Recognition in SSVEP-BCIs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1