Transgene-free Genome Editing in Grapevine.

IF 1 Q3 BIOLOGY Bio-protocol Pub Date : 2025-02-20 DOI:10.21769/BioProtoc.5190
Edoardo Bertini, Erica D'Incà, Stefania Zattoni, Sara Lissandrini, Luca Cattaneo, Clarissa Ciffolillo, Alessandra Amato, Marianna Fasoli, Sara Zenoni
{"title":"Transgene-free Genome Editing in Grapevine.","authors":"Edoardo Bertini, Erica D'Incà, Stefania Zattoni, Sara Lissandrini, Luca Cattaneo, Clarissa Ciffolillo, Alessandra Amato, Marianna Fasoli, Sara Zenoni","doi":"10.21769/BioProtoc.5190","DOIUrl":null,"url":null,"abstract":"<p><p>CRISPR/Cas9 genome editing technology has revolutionized plant breeding by offering precise and rapid modifications. Traditional breeding methods are often slow and imprecise, whereas CRISPR/Cas9 allows for targeted genetic improvements. Previously, direct delivery of Cas9-single guide RNA (sgRNA) ribonucleoprotein (RNP) complexes to grapevine (<i>Vitis vinifera</i>) protoplasts has been demonstrated, but successful regeneration of edited protoplasts into whole plants has not been achieved. Here, we describe an efficient protocol for obtaining transgene/DNA-free edited grapevine plants by transfecting protoplasts isolated from embryogenic callus and subsequently regenerating them. The regenerated edited plants were comparable in morphology and growth habit to wild-type controls. This protocol provides a highly efficient method for DNA-free genome editing in grapevine, addressing regulatory concerns and potentially facilitating the genetic improvement of grapevine and other woody crop plants. Key features • Protoplasts are one of the most commonly used systems for the application of new breeding technologies, including DNA-free genome editing. • Protoplasts are a highly accessible platform by CRISPR-Cas9 ribonucleoparticles through chemical or physical transfection. • CRISPR-Cas9 ribonucleoparticles avoid the use of both <i>Agrobacterium tumefaciens</i> and plasmids; no stable integration of exogenous DNA occurs. • The genetic background of DNA-free edited plants regenerated from protoplasts remains unchanged and identical to the original plant.</p>","PeriodicalId":93907,"journal":{"name":"Bio-protocol","volume":"15 4","pages":"e5190"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11865842/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-protocol","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21769/BioProtoc.5190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

CRISPR/Cas9 genome editing technology has revolutionized plant breeding by offering precise and rapid modifications. Traditional breeding methods are often slow and imprecise, whereas CRISPR/Cas9 allows for targeted genetic improvements. Previously, direct delivery of Cas9-single guide RNA (sgRNA) ribonucleoprotein (RNP) complexes to grapevine (Vitis vinifera) protoplasts has been demonstrated, but successful regeneration of edited protoplasts into whole plants has not been achieved. Here, we describe an efficient protocol for obtaining transgene/DNA-free edited grapevine plants by transfecting protoplasts isolated from embryogenic callus and subsequently regenerating them. The regenerated edited plants were comparable in morphology and growth habit to wild-type controls. This protocol provides a highly efficient method for DNA-free genome editing in grapevine, addressing regulatory concerns and potentially facilitating the genetic improvement of grapevine and other woody crop plants. Key features • Protoplasts are one of the most commonly used systems for the application of new breeding technologies, including DNA-free genome editing. • Protoplasts are a highly accessible platform by CRISPR-Cas9 ribonucleoparticles through chemical or physical transfection. • CRISPR-Cas9 ribonucleoparticles avoid the use of both Agrobacterium tumefaciens and plasmids; no stable integration of exogenous DNA occurs. • The genetic background of DNA-free edited plants regenerated from protoplasts remains unchanged and identical to the original plant.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
期刊最新文献
Simple Method for Efficient RNA Extraction From Arabidopsis Embryos. Streamlined Quantification of Microglial Morphology in Mouse Brains Using 3D Immunofluorescence Analysis. Streamlined Quantification of p-γ-H2AX Foci for DNA Damage Analysis in Melanoma and Melanocyte Co-cultures Exposed to FLASH Irradiation Using Automated Image Cytometry. Transgene-free Genome Editing in Grapevine. Vegetative Propagation of Cannabis sativa and Resin Obtained From its Female Inflorescences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1