A data-efficient strategy for building high-performing medical foundation models

IF 26.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL Nature Biomedical Engineering Pub Date : 2025-03-05 DOI:10.1038/s41551-025-01365-0
Yuqi Sun, Weimin Tan, Zhuoyao Gu, Ruian He, Siyuan Chen, Miao Pang, Bo Yan
{"title":"A data-efficient strategy for building high-performing medical foundation models","authors":"Yuqi Sun, Weimin Tan, Zhuoyao Gu, Ruian He, Siyuan Chen, Miao Pang, Bo Yan","doi":"10.1038/s41551-025-01365-0","DOIUrl":null,"url":null,"abstract":"<p>Foundation models are pretrained on massive datasets. However, collecting medical datasets is expensive and time-consuming, and raises privacy concerns. Here we show that synthetic data generated via conditioning with disease labels can be leveraged for building high-performing medical foundation models. We pretrained a retinal foundation model, first with approximately one million synthetic retinal images with physiological structures and feature distribution consistent with real counterparts, and then with only 16.7% of the 904,170 real-world colour fundus photography images required in a recently reported retinal foundation model (RETFound). The data-efficient model performed as well or better than RETFound across nine public datasets and four diagnostic tasks; and for diabetic-retinopathy grading, it used only 40% of the expert-annotated training data used by RETFound. We also support the generalizability of the data-efficient strategy by building a classifier for the detection of tuberculosis on chest X-ray images. The text-conditioned generation of synthetic data may enhance the performance and generalization of medical foundation models.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"52 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-025-01365-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Foundation models are pretrained on massive datasets. However, collecting medical datasets is expensive and time-consuming, and raises privacy concerns. Here we show that synthetic data generated via conditioning with disease labels can be leveraged for building high-performing medical foundation models. We pretrained a retinal foundation model, first with approximately one million synthetic retinal images with physiological structures and feature distribution consistent with real counterparts, and then with only 16.7% of the 904,170 real-world colour fundus photography images required in a recently reported retinal foundation model (RETFound). The data-efficient model performed as well or better than RETFound across nine public datasets and four diagnostic tasks; and for diabetic-retinopathy grading, it used only 40% of the expert-annotated training data used by RETFound. We also support the generalizability of the data-efficient strategy by building a classifier for the detection of tuberculosis on chest X-ray images. The text-conditioned generation of synthetic data may enhance the performance and generalization of medical foundation models.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Biomedical Engineering
Nature Biomedical Engineering Medicine-Medicine (miscellaneous)
CiteScore
45.30
自引率
1.10%
发文量
138
期刊介绍: Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.
期刊最新文献
Non-viral intron knock-ins for targeted gene integration into human T cells and for T-cell selection A deep-learning model for quantifying circulating tumour DNA from the density distribution of DNA-fragment lengths A positron emission tomography tracer for the imaging of oxidative stress in the central nervous system Deep mutational learning for the selection of therapeutic antibodies resistant to the evolution of Omicron variants of SARS-CoV-2 A data-efficient strategy for building high-performing medical foundation models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1