Ferredoxin-mediated mechanism for efficient nitrogen utilization in maize

IF 15.8 1区 生物学 Q1 PLANT SCIENCES Nature Plants Pub Date : 2025-03-05 DOI:10.1038/s41477-025-01934-w
Guannan Jia, Guojingwei Chen, Zhaoheng Zhang, Chenghua Tian, Yaping Wang, Jie Luo, Kaina Zhang, Xiaoyun Zhao, Xiaoming Zhao, Zhen Li, Linfeng Sun, Wenqiang Yang, Yan Guo, Jiří Friml, Zhizhong Gong, Jing Zhang
{"title":"Ferredoxin-mediated mechanism for efficient nitrogen utilization in maize","authors":"Guannan Jia, Guojingwei Chen, Zhaoheng Zhang, Chenghua Tian, Yaping Wang, Jie Luo, Kaina Zhang, Xiaoyun Zhao, Xiaoming Zhao, Zhen Li, Linfeng Sun, Wenqiang Yang, Yan Guo, Jiří Friml, Zhizhong Gong, Jing Zhang","doi":"10.1038/s41477-025-01934-w","DOIUrl":null,"url":null,"abstract":"<p>Nitrogen (N) is an essential macronutrient for plant development and, ultimately, yield. Identifying the genetic components and mechanisms underlying N use efficiency in maize (<i>Zea mays</i> L.) is thus of great importance. Nitrate (NO<sub>3</sub><sup>−</sup>) is the preferred inorganic N source in maize. Here we performed a genome-wide association study of shoot NO<sub>3</sub><sup>−</sup> accumulation in maize seedlings grown under low-NO<sub>3</sub><sup>−</sup> conditions, identifying the ferredoxin family gene <i>ZmFd4</i> as a major contributor to this trait. ZmFd4 interacts and co-localizes with nitrite reductases (ZmNiRs) in chloroplasts to promote their enzymatic activity. Furthermore, ZmFd4 forms a high-affinity heterodimer with its closest paralogue, ZmFd9, in a NO<sub>3</sub><sup>−</sup>-sensitive manner. Although ZmFd4 exerts similar biochemical functions as ZmFd9, ZmFd4 and ZmFd9 interaction limits their ability to associate with ZmNiRs and stimulate their activity. Knockout lines for <i>ZmFd4</i> with decreased NO<sub>3</sub><sup>−</sup> contents exhibit more efficient NO<sub>3</sub><sup>−</sup> assimilation, and field experiments show consistently improved N utilization and grain yield under N-deficient conditions. Our work thus provides molecular and mechanistic insights into the natural variation in N utilization, instrumental for genetic improvement of yield in maize and, potentially, in other crops.</p>","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"23 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41477-025-01934-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Nitrogen (N) is an essential macronutrient for plant development and, ultimately, yield. Identifying the genetic components and mechanisms underlying N use efficiency in maize (Zea mays L.) is thus of great importance. Nitrate (NO3) is the preferred inorganic N source in maize. Here we performed a genome-wide association study of shoot NO3 accumulation in maize seedlings grown under low-NO3 conditions, identifying the ferredoxin family gene ZmFd4 as a major contributor to this trait. ZmFd4 interacts and co-localizes with nitrite reductases (ZmNiRs) in chloroplasts to promote their enzymatic activity. Furthermore, ZmFd4 forms a high-affinity heterodimer with its closest paralogue, ZmFd9, in a NO3-sensitive manner. Although ZmFd4 exerts similar biochemical functions as ZmFd9, ZmFd4 and ZmFd9 interaction limits their ability to associate with ZmNiRs and stimulate their activity. Knockout lines for ZmFd4 with decreased NO3 contents exhibit more efficient NO3 assimilation, and field experiments show consistently improved N utilization and grain yield under N-deficient conditions. Our work thus provides molecular and mechanistic insights into the natural variation in N utilization, instrumental for genetic improvement of yield in maize and, potentially, in other crops.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氮(N)是植物生长发育和最终产量所必需的重要营养元素。因此,确定玉米(Zea mays L.)氮利用效率的遗传成分和机制非常重要。硝酸盐(NO3-)是玉米的首选无机氮源。在这里,我们对在低 NO3- 条件下生长的玉米幼苗的嫩枝 NO3- 积累进行了全基因组关联研究,发现铁氧还蛋白家族基因 ZmFd4 是导致这一性状的主要因素。ZmFd4 与叶绿体中的亚硝酸还原酶(ZmNiRs)相互作用并共定位,促进其酶活性。此外,ZmFd4 还以对 NO3 敏感的方式与其最接近的同源物 ZmFd9 形成高亲和力的异源二聚体。尽管 ZmFd4 发挥着与 ZmFd9 相似的生化功能,但 ZmFd4 和 ZmFd9 的相互作用限制了它们与 ZmNiRs 结合并刺激其活性的能力。NO3-含量降低的 ZmFd4 基因剔除株表现出更高效的 NO3-同化作用,田间试验表明,在缺氮条件下,氮的利用率和谷物产量持续提高。因此,我们的工作为了解氮利用的自然变异提供了分子和机理方面的见解,有助于玉米以及其他作物产量的遗传改良。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Plants
Nature Plants PLANT SCIENCES-
CiteScore
25.30
自引率
2.20%
发文量
196
期刊介绍: Nature Plants is an online-only, monthly journal publishing the best research on plants — from their evolution, development, metabolism and environmental interactions to their societal significance.
期刊最新文献
Ferredoxin-mediated mechanism for efficient nitrogen utilization in maize Regulation of alternative splicing by CBF-mediated protein condensation in plant response to cold stress Structural basis for the activation of plant bunyavirus replication machinery and its dual-targeted inhibition by ribavirin Author Correction: MADS31 supports female germline development by repressing the post-fertilization programme in cereal ovules. Author Correction: Piperideine-6-carboxylic acid regulates vitamin B6 homeostasis and modulates systemic immunity in plants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1