R. Shanthappa, Ashok Kumar Kakarla, Hari Bandi, Wasim Akram Syed, Jae Su Yu
{"title":"Unraveling electrochemical performance of magnesium vanadate-based nanostructures as advanced cathodes for rechargeable aqueous zinc-ion batteries","authors":"R. Shanthappa, Ashok Kumar Kakarla, Hari Bandi, Wasim Akram Syed, Jae Su Yu","doi":"10.1016/j.jma.2025.02.014","DOIUrl":null,"url":null,"abstract":"High-performance aqueous zinc (Zn)-ion batteries (AZIBs) have emerged as one of the greatest favorable candidates for next-generation energy storage systems because of their low cost, sustainability, high safety, and eco-friendliness. In this report, we prepared magnesium vanadate (MgVO)-based nanostructures by a facile single-step solvothermal method with varying experimental reaction times (1, 3, and 6 h) and investigated the effect of the reaction time on the morphology and layered structure for MgVO-based compounds. The newly prepared MgVO-1 h, MgVO-3 h and MgVO-6 h samples were used as cathode materials for AZIBs. Compared to the MgVO-1 h and MgVO-6 h cathodes, the MgVO-3 h cathode showed a higher specific capacity of 492.74 mA h g<sup>-1</sup> at 1 A g<sup>-1</sup> over 500 cycles and excellent rate behavior (291.58 mA h g<sup>-1</sup> at 3.75 A g<sup>-1</sup>) with high cycling stability (116 %) over 2000 cycles at 5 A g<sup>-1</sup>. Moreover, the MgVO-3 h electrode exhibited good electrochemical performance owing to its fast Zn-ion diffusion kinetics. Additionally, various ex-situ analyses confirmed that the MgVO-3 h cathode displayed excellent insertion/extraction of Zn<sup>2+</sup> ions during charge and discharge processes. This study offers an efficient method for the synthesis of nanostructured MgVO-based cathode materials for high-performance AZIBs.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"13 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2025.02.014","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
High-performance aqueous zinc (Zn)-ion batteries (AZIBs) have emerged as one of the greatest favorable candidates for next-generation energy storage systems because of their low cost, sustainability, high safety, and eco-friendliness. In this report, we prepared magnesium vanadate (MgVO)-based nanostructures by a facile single-step solvothermal method with varying experimental reaction times (1, 3, and 6 h) and investigated the effect of the reaction time on the morphology and layered structure for MgVO-based compounds. The newly prepared MgVO-1 h, MgVO-3 h and MgVO-6 h samples were used as cathode materials for AZIBs. Compared to the MgVO-1 h and MgVO-6 h cathodes, the MgVO-3 h cathode showed a higher specific capacity of 492.74 mA h g-1 at 1 A g-1 over 500 cycles and excellent rate behavior (291.58 mA h g-1 at 3.75 A g-1) with high cycling stability (116 %) over 2000 cycles at 5 A g-1. Moreover, the MgVO-3 h electrode exhibited good electrochemical performance owing to its fast Zn-ion diffusion kinetics. Additionally, various ex-situ analyses confirmed that the MgVO-3 h cathode displayed excellent insertion/extraction of Zn2+ ions during charge and discharge processes. This study offers an efficient method for the synthesis of nanostructured MgVO-based cathode materials for high-performance AZIBs.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.