VIPER-TACs leverage viral E3 ligases for disease-specific targeted protein degradation

IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell Chemical Biology Pub Date : 2025-03-05 DOI:10.1016/j.chembiol.2025.02.002
Kyle Mangano, Robert G. Guenette, Spencer Hill, Shiqian Li, Jeffrey J. Liu, Cory M. Nadel, Suresh Archunan, Arghya Sadhukhan, Rajiv Kapoor, Seung Wook Yang, Kate S. Ashton, Patrick Ryan Potts
{"title":"VIPER-TACs leverage viral E3 ligases for disease-specific targeted protein degradation","authors":"Kyle Mangano, Robert G. Guenette, Spencer Hill, Shiqian Li, Jeffrey J. Liu, Cory M. Nadel, Suresh Archunan, Arghya Sadhukhan, Rajiv Kapoor, Seung Wook Yang, Kate S. Ashton, Patrick Ryan Potts","doi":"10.1016/j.chembiol.2025.02.002","DOIUrl":null,"url":null,"abstract":"In targeted protein degradation (TPD) a protein of interest is degraded by chemically induced proximity to an E3 ubiquitin ligase. One limitation of using TPD therapeutically is that most E3 ligases have broad tissue expression, which can contribute to toxicity via target degradation in healthy cells. Many pathogenic and oncogenic viruses encode E3 ligases (vE3s), which <em>de facto</em> have strictly limited expression to diseased cells. Here, we provide proof-of-concept for viral E3 pan-essential removing targeting chimeras (VIPER-TACs) that are bi-functional molecules that utilize viral E3 ubiquitin ligases to selectively degrade pan-essential proteins and eliminate diseased cells. We find that the human papillomavirus (HPV) ligase E6 can degrade the SARS1 pan-essential target protein in a model of HPV-positive cervical cancer to selectively kill E6 expressing cancer cells. Thus, VIPER-TACs have the capacity to dramatically increase the therapeutic window, alleviate toxicity concerns, and ultimately expand the potential target space for TPD.","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"43 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.chembiol.2025.02.002","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In targeted protein degradation (TPD) a protein of interest is degraded by chemically induced proximity to an E3 ubiquitin ligase. One limitation of using TPD therapeutically is that most E3 ligases have broad tissue expression, which can contribute to toxicity via target degradation in healthy cells. Many pathogenic and oncogenic viruses encode E3 ligases (vE3s), which de facto have strictly limited expression to diseased cells. Here, we provide proof-of-concept for viral E3 pan-essential removing targeting chimeras (VIPER-TACs) that are bi-functional molecules that utilize viral E3 ubiquitin ligases to selectively degrade pan-essential proteins and eliminate diseased cells. We find that the human papillomavirus (HPV) ligase E6 can degrade the SARS1 pan-essential target protein in a model of HPV-positive cervical cancer to selectively kill E6 expressing cancer cells. Thus, VIPER-TACs have the capacity to dramatically increase the therapeutic window, alleviate toxicity concerns, and ultimately expand the potential target space for TPD.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Chemical Biology
Cell Chemical Biology Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
14.70
自引率
2.30%
发文量
143
期刊介绍: Cell Chemical Biology, a Cell Press journal established in 1994 as Chemistry & Biology, focuses on publishing crucial advances in chemical biology research with broad appeal to our diverse community, spanning basic scientists to clinicians. Pioneering investigations at the chemistry-biology interface, the journal fosters collaboration between these disciplines. We encourage submissions providing significant conceptual advancements of broad interest across chemical, biological, clinical, and related fields. Particularly sought are articles utilizing chemical tools to perturb, visualize, and measure biological systems, offering unique insights into molecular mechanisms, disease biology, and therapeutics.
期刊最新文献
Mechanisms and functions of lysosomal lipid homeostasis VIPER-TACs leverage viral E3 ligases for disease-specific targeted protein degradation Antibiotic target discovery by integrated phenotypic and activity-based profiling of electrophilic fragments Dynamic PRDX S-acylation modulates ROS stress and signaling NAPE-PLD is target of thiazide diuretics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1