{"title":"Developing k-out-of-n: G multilevel system with mixed redundancy strategy to protect DSP code using simplified swarm optimization","authors":"Tsung-Jung Hsieh","doi":"10.1016/j.ress.2025.110948","DOIUrl":null,"url":null,"abstract":"<div><div>Mitigating transient faults in aerospace software, particularly radiation-induced Single-Event Upsets (SEUs) affecting Digital Signal Processor (DSP) code, remains a critical challenge. Redundancy strategies are among the most effective approaches to address SEUs. This study introduces a novel program architecture based on a <em>k</em>-out-of-<em>n</em>: G system, incorporating mixed redundancy strategies to enhance the reliability of DSP code. As DSP code operates within a multilevel system, this is the first study to integrate a multilevel system with <em>k</em>-out-of-<em>n</em>: G modules using mixed redundancy strategies. This integration allows for diverse combinations of subsystem reliability calculations, making it strategically advantageous. To evaluate the reliability of redundant program modules in each subsystem, a modular continuous-time Markov chain (CTMC) was applied. To address the extensive combinations of <em>k</em> and <em>n</em> values alongside redundancy strategies, simplified swarm optimization (SSO) was employed for multilevel encoding and near-optimal solution discovery. Experiments on the Fast Fourier Transformation (FFT) program demonstrated the method's effectiveness compared to state-of-the-art approaches, further verifying its scalability and capability to establish a more stable and highly reliable DSP code architecture for large-scale problems.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"260 ","pages":"Article 110948"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832025001516","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Mitigating transient faults in aerospace software, particularly radiation-induced Single-Event Upsets (SEUs) affecting Digital Signal Processor (DSP) code, remains a critical challenge. Redundancy strategies are among the most effective approaches to address SEUs. This study introduces a novel program architecture based on a k-out-of-n: G system, incorporating mixed redundancy strategies to enhance the reliability of DSP code. As DSP code operates within a multilevel system, this is the first study to integrate a multilevel system with k-out-of-n: G modules using mixed redundancy strategies. This integration allows for diverse combinations of subsystem reliability calculations, making it strategically advantageous. To evaluate the reliability of redundant program modules in each subsystem, a modular continuous-time Markov chain (CTMC) was applied. To address the extensive combinations of k and n values alongside redundancy strategies, simplified swarm optimization (SSO) was employed for multilevel encoding and near-optimal solution discovery. Experiments on the Fast Fourier Transformation (FFT) program demonstrated the method's effectiveness compared to state-of-the-art approaches, further verifying its scalability and capability to establish a more stable and highly reliable DSP code architecture for large-scale problems.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.