Ming Liu , Zhongzheng Liu , Feng Chu , Feifeng Zheng , Alexandre Dolgui
{"title":"Dynamic structural adaptation for building viable supply chains under super disruption events","authors":"Ming Liu , Zhongzheng Liu , Feng Chu , Feifeng Zheng , Alexandre Dolgui","doi":"10.1016/j.trb.2025.103190","DOIUrl":null,"url":null,"abstract":"<div><div>Supply chain (SC) has been increasingly challenged by disruption events (DEs), where super DEs (SDEs) comprising a sequence of DEs, e.g., COVID-19, pose significant threats with long-term impacts. To hedge against SDEs, SC viability has been introduced, whose distinctive feature is the ability to adapt the SC structure. Building SC viability via dynamic SC structural adaptation under SDEs, however, has not been quantitatively addressed in the literature. This study investigates a novel viable SC building problem under SDEs. It consists of timely assessing the disruption risk and dynamically adapting the SC structure, to satisfy uncertain demands. The aim is to find the best balance between the disruption risk and the SC operational cost. To portray the structural and temporal risk propagations along the dynamic SC structure, a new structure-variable dynamic Bayesian network (SVDBN) is proposed. Then, a bi-objective mixed-integer non-linear programming (MI-NLP) model is established. Based on analyses of problem features, a decomposition-and-clustering (DC) heuristic algorithm is designed to solve the problem. Numerical experiments are conducted to evaluate the performance of the approach, and managerial insights are provided as well.</div></div>","PeriodicalId":54418,"journal":{"name":"Transportation Research Part B-Methodological","volume":"195 ","pages":"Article 103190"},"PeriodicalIF":5.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part B-Methodological","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191261525000396","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Supply chain (SC) has been increasingly challenged by disruption events (DEs), where super DEs (SDEs) comprising a sequence of DEs, e.g., COVID-19, pose significant threats with long-term impacts. To hedge against SDEs, SC viability has been introduced, whose distinctive feature is the ability to adapt the SC structure. Building SC viability via dynamic SC structural adaptation under SDEs, however, has not been quantitatively addressed in the literature. This study investigates a novel viable SC building problem under SDEs. It consists of timely assessing the disruption risk and dynamically adapting the SC structure, to satisfy uncertain demands. The aim is to find the best balance between the disruption risk and the SC operational cost. To portray the structural and temporal risk propagations along the dynamic SC structure, a new structure-variable dynamic Bayesian network (SVDBN) is proposed. Then, a bi-objective mixed-integer non-linear programming (MI-NLP) model is established. Based on analyses of problem features, a decomposition-and-clustering (DC) heuristic algorithm is designed to solve the problem. Numerical experiments are conducted to evaluate the performance of the approach, and managerial insights are provided as well.
期刊介绍:
Transportation Research: Part B publishes papers on all methodological aspects of the subject, particularly those that require mathematical analysis. The general theme of the journal is the development and solution of problems that are adequately motivated to deal with important aspects of the design and/or analysis of transportation systems. Areas covered include: traffic flow; design and analysis of transportation networks; control and scheduling; optimization; queuing theory; logistics; supply chains; development and application of statistical, econometric and mathematical models to address transportation problems; cost models; pricing and/or investment; traveler or shipper behavior; cost-benefit methodologies.