Bridging micro-to-nano scales for metal ore characterization via one-shot super-resolution

IF 5 2区 工程技术 Q1 ENGINEERING, CHEMICAL Minerals Engineering Pub Date : 2025-03-05 DOI:10.1016/j.mineng.2025.109219
Kunning Tang , Ying Da Wang , Peyman Mostaghimi , Yufu Niu , Ryan T. Armstrong , Yulai Zhang , Lachlan Deakin , Lydia Knuefing , Mark Knackstedt
{"title":"Bridging micro-to-nano scales for metal ore characterization via one-shot super-resolution","authors":"Kunning Tang ,&nbsp;Ying Da Wang ,&nbsp;Peyman Mostaghimi ,&nbsp;Yufu Niu ,&nbsp;Ryan T. Armstrong ,&nbsp;Yulai Zhang ,&nbsp;Lachlan Deakin ,&nbsp;Lydia Knuefing ,&nbsp;Mark Knackstedt","doi":"10.1016/j.mineng.2025.109219","DOIUrl":null,"url":null,"abstract":"<div><div>The mineral composition, micro/nanostructure, and distribution of ore materials are commonly visualized, analyzed, and characterized using 2-dimensional (2D) scanning electron microscopy (SEM) and 3D X-ray micro-computed tomography (micro-CT). While SEM offers sufficient resolution for nano-scale feature characterization, it is limited to 2D structural and property insights. Micro-CT allows for 3D structural analysis, but its resolution is inadequate for capturing fine features. Additionally, tomography involves a trade-off between resolution and field of view (FOV). Practical scales often involve ore samples ranging from 10 mm to 80 mm in diameter, but acquiring fine-scale information (<span><math><mo>&lt;</mo></math></span>1 <span><math><mrow><mi>μ</mi><mi>m</mi></mrow></math></span>) typically reduces the sample diameter to 2 mm. To address these gaps, a super-resolution technique is proposed that integrates micro-CT at practical scales with fine-scale data. The method uses a segmentation-guided one-shot super-resolution network to bridge 2D SEM (<span><math><mrow><mn>0</mn><mo>.</mo><mn>5</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>) and 3D micro-CT (<span><math><mrow><mn>6</mn><mo>.</mo><mn>9</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>) for four Fe-rich ore particles with varying mineralogy, texture, and porosity. Testing on unseen micro-CT sections shows an error of <span><math><mo>&lt;</mo></math></span>10% compared to SEM data. An algorithm is proposed to transform the 3D super-resolved images into coarsened partial volume maps that contain SEM scale information but retain the micro-CT length scale. Porosity calculated from the coarsened maps agrees with experimental measurements, differing by less than 1%. This proposed workflow effectively infers nanoscale information at the micro-CT scale, substantially enhancing ore characterization.</div></div>","PeriodicalId":18594,"journal":{"name":"Minerals Engineering","volume":"225 ","pages":"Article 109219"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0892687525000470","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The mineral composition, micro/nanostructure, and distribution of ore materials are commonly visualized, analyzed, and characterized using 2-dimensional (2D) scanning electron microscopy (SEM) and 3D X-ray micro-computed tomography (micro-CT). While SEM offers sufficient resolution for nano-scale feature characterization, it is limited to 2D structural and property insights. Micro-CT allows for 3D structural analysis, but its resolution is inadequate for capturing fine features. Additionally, tomography involves a trade-off between resolution and field of view (FOV). Practical scales often involve ore samples ranging from 10 mm to 80 mm in diameter, but acquiring fine-scale information (<1 μm) typically reduces the sample diameter to 2 mm. To address these gaps, a super-resolution technique is proposed that integrates micro-CT at practical scales with fine-scale data. The method uses a segmentation-guided one-shot super-resolution network to bridge 2D SEM (0.5μm) and 3D micro-CT (6.9μm) for four Fe-rich ore particles with varying mineralogy, texture, and porosity. Testing on unseen micro-CT sections shows an error of <10% compared to SEM data. An algorithm is proposed to transform the 3D super-resolved images into coarsened partial volume maps that contain SEM scale information but retain the micro-CT length scale. Porosity calculated from the coarsened maps agrees with experimental measurements, differing by less than 1%. This proposed workflow effectively infers nanoscale information at the micro-CT scale, substantially enhancing ore characterization.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过一次超分辨率连接微纳米尺度的金属矿石表征
矿物组成、微/纳米结构和矿石材料的分布通常使用二维(2D)扫描电子显微镜(SEM)和三维x射线微计算机断层扫描(micro- ct)进行可视化、分析和表征。虽然扫描电镜为纳米尺度的特征表征提供了足够的分辨率,但它仅限于二维结构和性质的见解。Micro-CT允许进行三维结构分析,但其分辨率不足以捕捉精细特征。此外,断层扫描涉及到分辨率和视场(FOV)之间的权衡。实际的尺度通常涉及直径从10毫米到80毫米的矿石样品,但获得细尺度信息(<1 μm)通常将样品直径减小到2毫米。为了解决这些差距,提出了一种超分辨率技术,将实际尺度的微ct与精细尺度的数据相结合。该方法采用分段引导的一次性超分辨率网络,对4种不同矿物学、纹理和孔隙度的富铁矿石颗粒进行了2D SEM (0.5μm)和3D micro-CT (6.9μm)的桥接。对未见过的微型ct切片的测试显示,与SEM数据相比,误差为10%。提出了一种将三维超分辨图像转换为包含SEM尺度信息但保留微ct长度尺度的粗化局部体图的算法。从粗化图中计算出的孔隙度与实验测量值一致,相差不到1%。该工作流程在微ct尺度上有效推断纳米级信息,大大增强了矿石表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Minerals Engineering
Minerals Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
18.80%
发文量
519
审稿时长
81 days
期刊介绍: The purpose of the journal is to provide for the rapid publication of topical papers featuring the latest developments in the allied fields of mineral processing and extractive metallurgy. Its wide ranging coverage of research and practical (operating) topics includes physical separation methods, such as comminution, flotation concentration and dewatering, chemical methods such as bio-, hydro-, and electro-metallurgy, analytical techniques, process control, simulation and instrumentation, and mineralogical aspects of processing. Environmental issues, particularly those pertaining to sustainable development, will also be strongly covered.
期刊最新文献
Research progress on optimization of flotation reagent system and interface action mechanism for phosphate ore Application of m-methoxybenzyl hydroxamic acid in selective flotation separation of bastnaesite, fluorite and calcite and its mechanism Enhanced froth flotation recovery of copper sulfides from concentrator tailings using synthetic polystyrene nano-collectors A comprehensive review of beneficiation strategies for beach sand minerals Genesis-driven crystal plane differentiation and ADD adsorption: coupled regulation on stibnite floatability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1