{"title":"Experimental and numerical research on overall stability of stainless steel-timber composite beams","authors":"Lin Chen, Lu Yang, Kelong Xu","doi":"10.1016/j.engstruct.2025.119982","DOIUrl":null,"url":null,"abstract":"<div><div>The overall stability performance of stainless steel-timber composite (SSTC) beams connected by bolts was investigated through both experiment and numerical simulation methods. Two distinct SSTC cross-sectional forms of the SSTC were designed: flange SSTC and web SSTC. Stability experiments were conducted on four SSTC beams. The results indicated that the failure mode of the flange SSTC beam was characterized by flexural and torsional buckling, whereas the web SSTC beam exhibited compressive local buckling. Additionally, the load-displacement curves, mid-span section strain distributions, and the ductility of the SSTC beams were extracted and analyzed. A refined finite element (FE) model was developed to further analyze the SSTC beams, accounting for incorporating the material nonlinearity of both stainless steel and timber, as well as the nonlinear contact interactions among the timber, stainless steel beams, and bolts. The accuracy of this FE model was validated against experimental data. Subsequently, the verified model facilitated a parameter analysis, identifying key factors affecting the SSTC beams, including timber board thickness, width, and bolt diameter. A comprehensive series of FE simulations was conducted, and the resulting data were utilized to calibrate the parameters within the Perry form formula, which is widely employed in the stability design of stainless steel flexural members. This systematic refinement culminated in a specialized formula, precisely calibrated for the overall stability design of SSTC beams.</div></div>","PeriodicalId":11763,"journal":{"name":"Engineering Structures","volume":"331 ","pages":"Article 119982"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141029625003736","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The overall stability performance of stainless steel-timber composite (SSTC) beams connected by bolts was investigated through both experiment and numerical simulation methods. Two distinct SSTC cross-sectional forms of the SSTC were designed: flange SSTC and web SSTC. Stability experiments were conducted on four SSTC beams. The results indicated that the failure mode of the flange SSTC beam was characterized by flexural and torsional buckling, whereas the web SSTC beam exhibited compressive local buckling. Additionally, the load-displacement curves, mid-span section strain distributions, and the ductility of the SSTC beams were extracted and analyzed. A refined finite element (FE) model was developed to further analyze the SSTC beams, accounting for incorporating the material nonlinearity of both stainless steel and timber, as well as the nonlinear contact interactions among the timber, stainless steel beams, and bolts. The accuracy of this FE model was validated against experimental data. Subsequently, the verified model facilitated a parameter analysis, identifying key factors affecting the SSTC beams, including timber board thickness, width, and bolt diameter. A comprehensive series of FE simulations was conducted, and the resulting data were utilized to calibrate the parameters within the Perry form formula, which is widely employed in the stability design of stainless steel flexural members. This systematic refinement culminated in a specialized formula, precisely calibrated for the overall stability design of SSTC beams.
期刊介绍:
Engineering Structures provides a forum for a broad blend of scientific and technical papers to reflect the evolving needs of the structural engineering and structural mechanics communities. Particularly welcome are contributions dealing with applications of structural engineering and mechanics principles in all areas of technology. The journal aspires to a broad and integrated coverage of the effects of dynamic loadings and of the modelling techniques whereby the structural response to these loadings may be computed.
The scope of Engineering Structures encompasses, but is not restricted to, the following areas: infrastructure engineering; earthquake engineering; structure-fluid-soil interaction; wind engineering; fire engineering; blast engineering; structural reliability/stability; life assessment/integrity; structural health monitoring; multi-hazard engineering; structural dynamics; optimization; expert systems; experimental modelling; performance-based design; multiscale analysis; value engineering.
Topics of interest include: tall buildings; innovative structures; environmentally responsive structures; bridges; stadiums; commercial and public buildings; transmission towers; television and telecommunication masts; foldable structures; cooling towers; plates and shells; suspension structures; protective structures; smart structures; nuclear reactors; dams; pressure vessels; pipelines; tunnels.
Engineering Structures also publishes review articles, short communications and discussions, book reviews, and a diary on international events related to any aspect of structural engineering.