{"title":"Taxonomic framework for neural network-based anomaly detection in bridge monitoring","authors":"Imane Bayane, John Leander, Raid Karoumi","doi":"10.1016/j.autcon.2025.106113","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate differentiation between damage-related anomalies and data errors is a critical challenge in bridge monitoring. This paper presents a data-driven framework for anomaly detection and classification, addressing the question: How can anomalies be classified in multi-sensor bridge monitoring to distinguish structural changes from noise? The framework combines an adapted anomaly taxonomy with a deep neural network trained on synthetic data. It is validated using long-term monitoring data from a railway bridge, incorporating strain gauges, accelerometers, and an inclinometer. In offline training, the model achieves high precision, recall, and F1-scores, effectively detecting anomaly classes across sensor types. For online prediction, it provides anomaly type percentages and visualizations over daily, weekly, and annual timeframes, distinguishing frequent noise-related anomalies from rare anomalies signaling structural changes. Requiring one month of training data, the framework delivers a scalable solution for bridge monitoring and lays the groundwork for future self-learning anomaly detection in infrastructure management.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"173 ","pages":"Article 106113"},"PeriodicalIF":9.6000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580525001530","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate differentiation between damage-related anomalies and data errors is a critical challenge in bridge monitoring. This paper presents a data-driven framework for anomaly detection and classification, addressing the question: How can anomalies be classified in multi-sensor bridge monitoring to distinguish structural changes from noise? The framework combines an adapted anomaly taxonomy with a deep neural network trained on synthetic data. It is validated using long-term monitoring data from a railway bridge, incorporating strain gauges, accelerometers, and an inclinometer. In offline training, the model achieves high precision, recall, and F1-scores, effectively detecting anomaly classes across sensor types. For online prediction, it provides anomaly type percentages and visualizations over daily, weekly, and annual timeframes, distinguishing frequent noise-related anomalies from rare anomalies signaling structural changes. Requiring one month of training data, the framework delivers a scalable solution for bridge monitoring and lays the groundwork for future self-learning anomaly detection in infrastructure management.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.