Optimizing the ratios of ridge-furrow mulching patterns and urea types improve the resource use efficiency and yield of broomcorn millet on the Loess Plateau of China

IF 5.9 1区 农林科学 Q1 AGRONOMY Agricultural Water Management Pub Date : 2025-03-06 DOI:10.1016/j.agwat.2025.109415
Lingling Cui , Jilian Lu , Shihao Ding , Xiaosa Song , Pengliang Chen , Baili Feng , Lixin Tian
{"title":"Optimizing the ratios of ridge-furrow mulching patterns and urea types improve the resource use efficiency and yield of broomcorn millet on the Loess Plateau of China","authors":"Lingling Cui ,&nbsp;Jilian Lu ,&nbsp;Shihao Ding ,&nbsp;Xiaosa Song ,&nbsp;Pengliang Chen ,&nbsp;Baili Feng ,&nbsp;Lixin Tian","doi":"10.1016/j.agwat.2025.109415","DOIUrl":null,"url":null,"abstract":"<div><div>Ridge-furrow mulching patterns and nitrogen application boosted crop yields in arid and semi-arid regions. Nevertheless, their combined impacts on broomcorn millet growth were unclear. A two-year field experiment was conducted to investigate the impacts of three ridge-furrow mulching configurations [traditional planting without mulch(TP), and two ridge-furrow mulching ratios, namely 40 cm: 40 cm(RF40), and 40 cm: 80 cm(RF80)] and four urea type ratios [100 % conventional urea application(U), 30 % conventional urea combined with 70 % controlled release urea(U3C7), 70 % conventional urea combined with 30 % controlled release urea(U7C3), 100 % controlled release urea(C), and no nitrogen fertilizer treatment(N0)] on water/nitrogen use efficiency and yield of broomcorn millet on the Loess Plateau. Results showed that in 2021, compared to TP, RF40 had higher soil moisture content, improved WUE, and increased the dry matter accumulation, thereby boosting the yield of broomcorn millet by 13.42 % and 17.15 % under U7C3 and U3C7 treatments, respectively. Meanwhile, U3C7 and U7C3 treatments significantly increased N partial factor productivity, nitrogen use efficiency, nitrogen recovery efficiency, and improved agronomic traits of broomcorn millet by coordinating fertilizer release with crop growth. Notably, the combination of RF40 and U7C3 maximized resource utilization efficiency and grain yield, with yield and water use efficiency increase of 42.79 % and 35.46 %, respectively. Partial least squares path modeling analysis indicated that fertilizer regimes were the key factor affecting the yield of broomcorn millet. This study offers a scientific foundation for enhancing resource utilization efficiency in arid and semi-arid regions.</div></div>","PeriodicalId":7634,"journal":{"name":"Agricultural Water Management","volume":"312 ","pages":"Article 109415"},"PeriodicalIF":5.9000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Water Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378377425001295","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Ridge-furrow mulching patterns and nitrogen application boosted crop yields in arid and semi-arid regions. Nevertheless, their combined impacts on broomcorn millet growth were unclear. A two-year field experiment was conducted to investigate the impacts of three ridge-furrow mulching configurations [traditional planting without mulch(TP), and two ridge-furrow mulching ratios, namely 40 cm: 40 cm(RF40), and 40 cm: 80 cm(RF80)] and four urea type ratios [100 % conventional urea application(U), 30 % conventional urea combined with 70 % controlled release urea(U3C7), 70 % conventional urea combined with 30 % controlled release urea(U7C3), 100 % controlled release urea(C), and no nitrogen fertilizer treatment(N0)] on water/nitrogen use efficiency and yield of broomcorn millet on the Loess Plateau. Results showed that in 2021, compared to TP, RF40 had higher soil moisture content, improved WUE, and increased the dry matter accumulation, thereby boosting the yield of broomcorn millet by 13.42 % and 17.15 % under U7C3 and U3C7 treatments, respectively. Meanwhile, U3C7 and U7C3 treatments significantly increased N partial factor productivity, nitrogen use efficiency, nitrogen recovery efficiency, and improved agronomic traits of broomcorn millet by coordinating fertilizer release with crop growth. Notably, the combination of RF40 and U7C3 maximized resource utilization efficiency and grain yield, with yield and water use efficiency increase of 42.79 % and 35.46 %, respectively. Partial least squares path modeling analysis indicated that fertilizer regimes were the key factor affecting the yield of broomcorn millet. This study offers a scientific foundation for enhancing resource utilization efficiency in arid and semi-arid regions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Agricultural Water Management
Agricultural Water Management 农林科学-农艺学
CiteScore
12.10
自引率
14.90%
发文量
648
审稿时长
4.9 months
期刊介绍: Agricultural Water Management publishes papers of international significance relating to the science, economics, and policy of agricultural water management. In all cases, manuscripts must address implications and provide insight regarding agricultural water management.
期刊最新文献
Optimizing subsurface pipe layout by considering leaching efficiency of major salt ions to improve crop coverage using HYDRUS-2D Optimizing the ratios of ridge-furrow mulching patterns and urea types improve the resource use efficiency and yield of broomcorn millet on the Loess Plateau of China Effect of water-saving technologies on nitrogen losses in rice fields: A meta-analysis Improving synergy of the water-agriculture-ecology system in arid areas using a novel co-optimization model Night transpiration of peanut affects interspecific water complementarity and use efficiency in maize/peanut intercropping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1