Evaluation of the effects of cartilage decellularized ECM in optimizing PHB-chitosan-HNT/chitosan-ECM core-shell electrospun scaffold: Physicochemical and biological properties
{"title":"Evaluation of the effects of cartilage decellularized ECM in optimizing PHB-chitosan-HNT/chitosan-ECM core-shell electrospun scaffold: Physicochemical and biological properties","authors":"Sepideh Ghadirian, Laleh Shariati, Saeed Karbasi","doi":"10.1016/j.bioadv.2025.214249","DOIUrl":null,"url":null,"abstract":"<div><div>Cartilage regeneration is still a highly challenging field due to its low self-healing ability. This study used a core-shell electrospinning technique to enhance cartilage tissue engineering by incorporating cartilage extracellular matrix (ECM). The core of fibers included poly(3-hydroxybutyrate)-Chitosan (PHB-Cs) and Halloysite nanotubes. The shell of fibers consisted of Cs and ECM (0, 1, 3, 5 wt%). Subsequently, the scaffolds were named 0E, 1E, 3E, and 5E. The study aimed to assess the impact of ECM on cellular behavior and chondrogenesis. Our findings indicate that ECM reduced fiber diameter from 775 nm for the 0E scaffold to 454 nm for the 1E scaffold. Water contact angle measurements revealed an increasing trend by ECM addition, from 42° for 0E to 67° for 1E. According to mechanical analysis, the 1E scaffold represented the highest strength (5.81 MPa) and strain (3.17%). Based on these analyses, the 1E was considered the optimum scaffold. MTT analysis showed cell viability of over 80% for the 0E and 1E. Also, the gene expression level was assessed for <em>Collagen II</em>, <em>Aggrecan</em>, <em>SOX 9</em>, and <em>Collagen X</em>. The results represented that in the 1E scaffold <em>Collagen II</em>, Aggrecan, and <em>SOX 9</em> were more upregulated at the end of the 21st day. However, in the 1E scaffold <em>collagen X,</em> as a hypertrophy marker, was downregulated at the end of the experiment. Overall, these results confirmed the potential of the 1E scaffold to be introduced as a promising cartilage tissue engineering scaffold for further studies.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"172 ","pages":"Article 214249"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science & Engineering C-Materials for Biological Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772950825000767","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Cartilage regeneration is still a highly challenging field due to its low self-healing ability. This study used a core-shell electrospinning technique to enhance cartilage tissue engineering by incorporating cartilage extracellular matrix (ECM). The core of fibers included poly(3-hydroxybutyrate)-Chitosan (PHB-Cs) and Halloysite nanotubes. The shell of fibers consisted of Cs and ECM (0, 1, 3, 5 wt%). Subsequently, the scaffolds were named 0E, 1E, 3E, and 5E. The study aimed to assess the impact of ECM on cellular behavior and chondrogenesis. Our findings indicate that ECM reduced fiber diameter from 775 nm for the 0E scaffold to 454 nm for the 1E scaffold. Water contact angle measurements revealed an increasing trend by ECM addition, from 42° for 0E to 67° for 1E. According to mechanical analysis, the 1E scaffold represented the highest strength (5.81 MPa) and strain (3.17%). Based on these analyses, the 1E was considered the optimum scaffold. MTT analysis showed cell viability of over 80% for the 0E and 1E. Also, the gene expression level was assessed for Collagen II, Aggrecan, SOX 9, and Collagen X. The results represented that in the 1E scaffold Collagen II, Aggrecan, and SOX 9 were more upregulated at the end of the 21st day. However, in the 1E scaffold collagen X, as a hypertrophy marker, was downregulated at the end of the experiment. Overall, these results confirmed the potential of the 1E scaffold to be introduced as a promising cartilage tissue engineering scaffold for further studies.
期刊介绍:
Biomaterials Advances, previously known as Materials Science and Engineering: C-Materials for Biological Applications (P-ISSN: 0928-4931, E-ISSN: 1873-0191). Includes topics at the interface of the biomedical sciences and materials engineering. These topics include:
• Bioinspired and biomimetic materials for medical applications
• Materials of biological origin for medical applications
• Materials for "active" medical applications
• Self-assembling and self-healing materials for medical applications
• "Smart" (i.e., stimulus-response) materials for medical applications
• Ceramic, metallic, polymeric, and composite materials for medical applications
• Materials for in vivo sensing
• Materials for in vivo imaging
• Materials for delivery of pharmacologic agents and vaccines
• Novel approaches for characterizing and modeling materials for medical applications
Manuscripts on biological topics without a materials science component, or manuscripts on materials science without biological applications, will not be considered for publication in Materials Science and Engineering C. New submissions are first assessed for language, scope and originality (plagiarism check) and can be desk rejected before review if they need English language improvements, are out of scope or present excessive duplication with published sources.
Biomaterials Advances sits within Elsevier''s biomaterials science portfolio alongside Biomaterials, Materials Today Bio and Biomaterials and Biosystems. As part of the broader Materials Today family, Biomaterials Advances offers authors rigorous peer review, rapid decisions, and high visibility. We look forward to receiving your submissions!