{"title":"Carbon-based thick films for electrochemical detection of neonicotinoid insecticides","authors":"Barbara Repič , Gregor Marolt , Danjela Kuscer","doi":"10.1016/j.jelechem.2025.119054","DOIUrl":null,"url":null,"abstract":"<div><div>Neonicotinoids (NNIs) are water-soluble, toxic, widespread-used systemic insecticides commonly found in the environment. Integrated electrochemical sensors enable the rapid on-site detection of NNIs in aqueous samples by analysing the reduction of the NNI's nitro functional group on the working electrode. We have investigated graphite (G), glassy carbon (GC) and carbon black (CB) thick films as working electrodes for the electrochemical detection of the NNI imidacloprid (IMD). Up to 35-μm-thick films of G, GC and CB on alumina were prepared by screen printing and subsequent firing at 850 °C in argon. G had the largest grain size, the roughest surface, and the lowest sheet resistance of 6.9 Ω/sq. GC and CB had a smoother surface, while their sheet resistances were up to 27 Ω/sq. All three films showed a reversible response to the Fe(CN)<sub>6</sub><sup>3−/4−</sup> redox probe with G having the highest electrochemically active surface area and the highest heterogeneous electron transfer rate constant. In the IMD solution with neutral pH, G, GC and CB exhibited characteristic reduction peak at −1.1 V and a re-oxidation peak at +0.2 V. An additional adsorption cathodic peak was observed with CB, indicating a significantly higher affinity of CB for IMD adsorption. With LODs under 1 μM, the G, GC and CB pristine thick films exhibiting great potential for the sensitive detection of IMD.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"984 ","pages":"Article 119054"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665725001274","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Neonicotinoids (NNIs) are water-soluble, toxic, widespread-used systemic insecticides commonly found in the environment. Integrated electrochemical sensors enable the rapid on-site detection of NNIs in aqueous samples by analysing the reduction of the NNI's nitro functional group on the working electrode. We have investigated graphite (G), glassy carbon (GC) and carbon black (CB) thick films as working electrodes for the electrochemical detection of the NNI imidacloprid (IMD). Up to 35-μm-thick films of G, GC and CB on alumina were prepared by screen printing and subsequent firing at 850 °C in argon. G had the largest grain size, the roughest surface, and the lowest sheet resistance of 6.9 Ω/sq. GC and CB had a smoother surface, while their sheet resistances were up to 27 Ω/sq. All three films showed a reversible response to the Fe(CN)63−/4− redox probe with G having the highest electrochemically active surface area and the highest heterogeneous electron transfer rate constant. In the IMD solution with neutral pH, G, GC and CB exhibited characteristic reduction peak at −1.1 V and a re-oxidation peak at +0.2 V. An additional adsorption cathodic peak was observed with CB, indicating a significantly higher affinity of CB for IMD adsorption. With LODs under 1 μM, the G, GC and CB pristine thick films exhibiting great potential for the sensitive detection of IMD.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.