Modeling crash avoidance behaviors in vehicle-pedestrian near-miss scenarios: Curvilinear time-to-collision and Mamba-driven deep reinforcement learning

IF 5.7 1区 工程技术 Q1 ERGONOMICS Accident; analysis and prevention Pub Date : 2025-03-04 DOI:10.1016/j.aap.2025.107984
Qingwen Pu , Kun Xie , Hongyu Guo , Yuan Zhu
{"title":"Modeling crash avoidance behaviors in vehicle-pedestrian near-miss scenarios: Curvilinear time-to-collision and Mamba-driven deep reinforcement learning","authors":"Qingwen Pu ,&nbsp;Kun Xie ,&nbsp;Hongyu Guo ,&nbsp;Yuan Zhu","doi":"10.1016/j.aap.2025.107984","DOIUrl":null,"url":null,"abstract":"<div><div>Interactions between vehicle–pedestrian at intersections often lead to safety–critical situations. This study aims to model the crash avoidance behaviors of vehicles during interactions with pedestrians in near-miss scenarios, contributing to the development of collision avoidance systems and safety-aware traffic simulations. Unmanned aerial vehicles were leveraged to collect high-resolution trajectory data of vehicle–pedestrian at urban intersections. A new surrogate safety measure, curvilinear time-to-collision (CurvTTC), was employed to identify vehicle–pedestrian near-miss scenarios. CurvTTC takes into account the curved trajectories of road users instead of assuming straight-line future trajectories, making it particularly suitable for safety analysis at intersections, where turning vehicles usually follow curved paths. An effective algorithm considering predicted trajectories and collision types was designed to compute CurvTTC. When CurvTTC was applied to capture vehicle–pedestrian conflicts at intersections, it demonstrated superior performance in identifying risks more accurately compared to other surrogate safety measures, emphasizing the importance of considering the curved trajectories of road users. Further, a novel deep deterministic policy gradient based on the Mamba network (Mamba-DDPG) approach was used to model vehicles’ crash avoidance behaviors during the vehicle–pedestrian conflicts captured. Results revealed that the Mamba-DDPG approach effectively learned the vehicle behaviors sequentially in both lateral and longitudinal dimensions during near-miss scenarios with pedestrians. The Mamba-DDPG approach achieved superior predictive accuracy by utilizing Mamba’s dynamic data reweighting, which prioritizes critical states. This resulted in better performance compared to both the standard DDPG and the Transformer-enhanced DDPG (Transformer-DDPG) methods. The Mamba-DDPG approach was employed to reconstruct evasive trajectories of vehicles when approaching pedestrians and its effectiveness in capturing the underlying policy of crash avoidance behaviors was validated.</div></div>","PeriodicalId":6926,"journal":{"name":"Accident; analysis and prevention","volume":"214 ","pages":"Article 107984"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accident; analysis and prevention","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001457525000703","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ERGONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Interactions between vehicle–pedestrian at intersections often lead to safety–critical situations. This study aims to model the crash avoidance behaviors of vehicles during interactions with pedestrians in near-miss scenarios, contributing to the development of collision avoidance systems and safety-aware traffic simulations. Unmanned aerial vehicles were leveraged to collect high-resolution trajectory data of vehicle–pedestrian at urban intersections. A new surrogate safety measure, curvilinear time-to-collision (CurvTTC), was employed to identify vehicle–pedestrian near-miss scenarios. CurvTTC takes into account the curved trajectories of road users instead of assuming straight-line future trajectories, making it particularly suitable for safety analysis at intersections, where turning vehicles usually follow curved paths. An effective algorithm considering predicted trajectories and collision types was designed to compute CurvTTC. When CurvTTC was applied to capture vehicle–pedestrian conflicts at intersections, it demonstrated superior performance in identifying risks more accurately compared to other surrogate safety measures, emphasizing the importance of considering the curved trajectories of road users. Further, a novel deep deterministic policy gradient based on the Mamba network (Mamba-DDPG) approach was used to model vehicles’ crash avoidance behaviors during the vehicle–pedestrian conflicts captured. Results revealed that the Mamba-DDPG approach effectively learned the vehicle behaviors sequentially in both lateral and longitudinal dimensions during near-miss scenarios with pedestrians. The Mamba-DDPG approach achieved superior predictive accuracy by utilizing Mamba’s dynamic data reweighting, which prioritizes critical states. This resulted in better performance compared to both the standard DDPG and the Transformer-enhanced DDPG (Transformer-DDPG) methods. The Mamba-DDPG approach was employed to reconstruct evasive trajectories of vehicles when approaching pedestrians and its effectiveness in capturing the underlying policy of crash avoidance behaviors was validated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.90
自引率
16.90%
发文量
264
审稿时长
48 days
期刊介绍: Accident Analysis & Prevention provides wide coverage of the general areas relating to accidental injury and damage, including the pre-injury and immediate post-injury phases. Published papers deal with medical, legal, economic, educational, behavioral, theoretical or empirical aspects of transportation accidents, as well as with accidents at other sites. Selected topics within the scope of the Journal may include: studies of human, environmental and vehicular factors influencing the occurrence, type and severity of accidents and injury; the design, implementation and evaluation of countermeasures; biomechanics of impact and human tolerance limits to injury; modelling and statistical analysis of accident data; policy, planning and decision-making in safety.
期刊最新文献
Influences of weather on pedestrian safety perception at mid-block crossing: A CAVE-based study Modeling crash avoidance behaviors in vehicle-pedestrian near-miss scenarios: Curvilinear time-to-collision and Mamba-driven deep reinforcement learning Application of a novel hybrid multigroup statistical approach to investigate the factors affecting crash severity Evaluating the impact of self-luminous road markings on driver behavior at unsignalized intersections: A simulator study Sensation seeking and crashes among young cyclists
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1