Techno-economic analysis and optimization of renewable sources and battery energy storage system across diverse climatic zones considering gas and electrical utilities

IF 9.9 1区 工程技术 Q1 ENERGY & FUELS Energy Conversion and Management Pub Date : 2025-03-06 DOI:10.1016/j.enconman.2025.119692
Kiran Qaisar , Fatima Surayya , Muhammad Zubair Iftikhar , Mustafa Anwar , Syed Ali Abbas Kazmi
{"title":"Techno-economic analysis and optimization of renewable sources and battery energy storage system across diverse climatic zones considering gas and electrical utilities","authors":"Kiran Qaisar ,&nbsp;Fatima Surayya ,&nbsp;Muhammad Zubair Iftikhar ,&nbsp;Mustafa Anwar ,&nbsp;Syed Ali Abbas Kazmi","doi":"10.1016/j.enconman.2025.119692","DOIUrl":null,"url":null,"abstract":"<div><div>Renewables are considered eco-friendly due to less emission, sustainability, and economical basis. The study focuses on implementation of indigenous renewable generation sources across residential sector of different climatic zones of Pakistan. This study carried-out techno-economic, environmental, robust, and cost analysis. Techno-economic optimization is performed to minimize net present cost (NPC), Levelized cost of electricity (COE) and to maximize renewable fraction (RF) for micro grid of a residential sector. Central and North region has a viable profile for solar irradiance. On that account best MG configuration is PV-BESS along with DG. While for South region wind profile is profitable. So optimum MG configuration in most regions is PV-WT-BESS. A comparative comparison is made for base case having just diesel generator (DG) to fulfil load demand and proposed case having renewables along with DG. Results shows that by adding RERs not only Greenhouse gas emissions are minimizing but also renewable fraction is increased besides minimizing NPC and LCOE. This led us to satisfy SDG-7 and SDG-13. In proposed case another comparison is made between combination of utilities. First configuration has both gas and electrical utility while other has just electrical utility to fulfil load demand. Results show that electrical utility is more efficient and economical.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"332 ","pages":"Article 119692"},"PeriodicalIF":9.9000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890425002158","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Renewables are considered eco-friendly due to less emission, sustainability, and economical basis. The study focuses on implementation of indigenous renewable generation sources across residential sector of different climatic zones of Pakistan. This study carried-out techno-economic, environmental, robust, and cost analysis. Techno-economic optimization is performed to minimize net present cost (NPC), Levelized cost of electricity (COE) and to maximize renewable fraction (RF) for micro grid of a residential sector. Central and North region has a viable profile for solar irradiance. On that account best MG configuration is PV-BESS along with DG. While for South region wind profile is profitable. So optimum MG configuration in most regions is PV-WT-BESS. A comparative comparison is made for base case having just diesel generator (DG) to fulfil load demand and proposed case having renewables along with DG. Results shows that by adding RERs not only Greenhouse gas emissions are minimizing but also renewable fraction is increased besides minimizing NPC and LCOE. This led us to satisfy SDG-7 and SDG-13. In proposed case another comparison is made between combination of utilities. First configuration has both gas and electrical utility while other has just electrical utility to fulfil load demand. Results show that electrical utility is more efficient and economical.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Conversion and Management
Energy Conversion and Management 工程技术-力学
CiteScore
19.00
自引率
11.50%
发文量
1304
审稿时长
17 days
期刊介绍: The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics. The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.
期刊最新文献
Editorial Board Techno-economic analysis and optimization of renewable sources and battery energy storage system across diverse climatic zones considering gas and electrical utilities Enhancing the performance of autocascade steam generating heat pumps through advanced exergy methods Towards hydrogen self-sufficiency: An innovative integration of coal hydrogasification and biomass-assisted autothermal gasification for synthetic natural gas production Study on the influence of dusty weather natural wind on the dust characteristics of trough concentrator regions in alpine areas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1