Supramolecular nanoagent as a dual-blocked thermoresistance inhibitor for effective mild-temperature photothermal therapy

IF 10.7 1区 生物学 Q1 BIOPHYSICS Biosensors and Bioelectronics Pub Date : 2025-03-02 DOI:10.1016/j.bios.2025.117322
Xin Liu , Weizhi Tao , Chen Gong , Sijia Wang , Yiliang Wu , Yanan Zhang , Yong Ling
{"title":"Supramolecular nanoagent as a dual-blocked thermoresistance inhibitor for effective mild-temperature photothermal therapy","authors":"Xin Liu ,&nbsp;Weizhi Tao ,&nbsp;Chen Gong ,&nbsp;Sijia Wang ,&nbsp;Yiliang Wu ,&nbsp;Yanan Zhang ,&nbsp;Yong Ling","doi":"10.1016/j.bios.2025.117322","DOIUrl":null,"url":null,"abstract":"<div><div>Mild-temperature (&lt;45 °C) photothermal therapy (PTT) is a promising approach to kill cancer cells by inhibiting the expression of heat shock proteins (HSPs) related to thermoresistance, a method commonly applied in most mild-temperature PTT studies. Regrettably, thermoresistance cannot be fully suppressed solely by inhibiting HSPs. Under normal conditions, heat shock factor 1 (HSF-1) remains inactive and forms a complex with HSPs. However, HSF-1 can dissociate from the complex and be activated, leading to the continuous production of significant amounts of HSPs, which in turn triggers thermoresistance upon heating. Therefore, simultaneously inhibiting both HSPs and HSF-1 activities presents a more effective strategy for developing mild-temperature PTT than only inhibiting HSPs. In this work, we focus on the complete blocking of thermoresistance to create a novel supramolecular nanoagent, IQ@NPs, for mild-temperature PTT. IQ@NPs demonstrated excellent drug release, tumor accumulation, and photothermal conversion, resulting in a rapid increase in the temperature of tumor sites to 42.9 °C within 5 min of irradiation. Western blotting revealed that IQ@NPs significantly inhibited the expression of HSPs (HSP90) and HSF-1. After 15 d treatment, tumor growth was significantly suppressed by IQ@NPs through effective mild-temperature PTT. Furthermore, IQ@NPs exhibited satisfactory safety and minimal side effects. This study represents a progressive advancement in mild-temperature PTT.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"278 ","pages":"Article 117322"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566325001964","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Mild-temperature (<45 °C) photothermal therapy (PTT) is a promising approach to kill cancer cells by inhibiting the expression of heat shock proteins (HSPs) related to thermoresistance, a method commonly applied in most mild-temperature PTT studies. Regrettably, thermoresistance cannot be fully suppressed solely by inhibiting HSPs. Under normal conditions, heat shock factor 1 (HSF-1) remains inactive and forms a complex with HSPs. However, HSF-1 can dissociate from the complex and be activated, leading to the continuous production of significant amounts of HSPs, which in turn triggers thermoresistance upon heating. Therefore, simultaneously inhibiting both HSPs and HSF-1 activities presents a more effective strategy for developing mild-temperature PTT than only inhibiting HSPs. In this work, we focus on the complete blocking of thermoresistance to create a novel supramolecular nanoagent, IQ@NPs, for mild-temperature PTT. IQ@NPs demonstrated excellent drug release, tumor accumulation, and photothermal conversion, resulting in a rapid increase in the temperature of tumor sites to 42.9 °C within 5 min of irradiation. Western blotting revealed that IQ@NPs significantly inhibited the expression of HSPs (HSP90) and HSF-1. After 15 d treatment, tumor growth was significantly suppressed by IQ@NPs through effective mild-temperature PTT. Furthermore, IQ@NPs exhibited satisfactory safety and minimal side effects. This study represents a progressive advancement in mild-temperature PTT.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biosensors and Bioelectronics
Biosensors and Bioelectronics 工程技术-电化学
CiteScore
20.80
自引率
7.10%
发文量
1006
审稿时长
29 days
期刊介绍: Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.
期刊最新文献
Editorial Board Electrochemical detection of Legionella pneumophila using DNAzymes and under continuous flow in cooling tower water PISAD: De novo peptide design for target protein with iterative stochastic searching algorithm and docking assessment Electrochemical pan-variant detection of SARS-CoV-2 through host cell receptor-mimicking molecular recognition. Supramolecular nanoagent as a dual-blocked thermoresistance inhibitor for effective mild-temperature photothermal therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1