Finite Element Method-Based Hybrid MRI/CBCT Generation to Improve Liver Stereotactic Body Radiation Therapy Targets Localization Accuracy

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING IEEE Transactions on Radiation and Plasma Medical Sciences Pub Date : 2024-09-23 DOI:10.1109/TRPMS.2024.3466184
Zeyu Zhang;Mark Chen;Ke Lu;Dongyang Guo;Zhuoran Jiang;Hualiang Zhong;Jason Molitoris;Phuoc T. Tran;Fang-Fang Yin;Lei Ren
{"title":"Finite Element Method-Based Hybrid MRI/CBCT Generation to Improve Liver Stereotactic Body Radiation Therapy Targets Localization Accuracy","authors":"Zeyu Zhang;Mark Chen;Ke Lu;Dongyang Guo;Zhuoran Jiang;Hualiang Zhong;Jason Molitoris;Phuoc T. Tran;Fang-Fang Yin;Lei Ren","doi":"10.1109/TRPMS.2024.3466184","DOIUrl":null,"url":null,"abstract":"Cone-beam CT (CBCT) is commonly used in treatment imaging, but its limited soft tissue contrast presents challenges for liver tumor localization. As a result, indirect localization methods relying on the liver’s boundary are commonly utilized, which have limited accuracy for tumor localization. On-board MRI offers superior soft tissue contrast but is limited by the cost. To address this, we devised a method to generate onboard virtual MRI by integrating pretreatment MRI with onboard CBCT, enhancing liver stereotactic body radiation therapy (SBRT) tumor localization accuracy. We employed a finite element method (FEM) for deformable mapping, deforming prior liver MR images onto CBCT geometry to create a virtual MRI. This hybrid virtual-MRI/CBCT (hMRI-CBCT) approach was evaluated in a pilot study involving 48 patients. The hMRI-CBCT demonstrated superb soft-tissue contrast with clear tumor visualization. Registration accuracy of hMRI-CBCT to planning CT significantly surpasses the onboard CBCT to planning CT registration, particularly for tumors not near the liver boundary, with an average error reduction of <inline-formula> <tex-math>$1.53~\\pm ~2$ </tex-math></inline-formula>.16 mm. Our study demonstrated that hybrid MRI/CBCT can apparently reduce localization errors in liver SBRT, potentially improving tumor control and reducing toxicities, and opening avenues for further margin reduction and dose escalation.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 3","pages":"372-381"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10689493/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Cone-beam CT (CBCT) is commonly used in treatment imaging, but its limited soft tissue contrast presents challenges for liver tumor localization. As a result, indirect localization methods relying on the liver’s boundary are commonly utilized, which have limited accuracy for tumor localization. On-board MRI offers superior soft tissue contrast but is limited by the cost. To address this, we devised a method to generate onboard virtual MRI by integrating pretreatment MRI with onboard CBCT, enhancing liver stereotactic body radiation therapy (SBRT) tumor localization accuracy. We employed a finite element method (FEM) for deformable mapping, deforming prior liver MR images onto CBCT geometry to create a virtual MRI. This hybrid virtual-MRI/CBCT (hMRI-CBCT) approach was evaluated in a pilot study involving 48 patients. The hMRI-CBCT demonstrated superb soft-tissue contrast with clear tumor visualization. Registration accuracy of hMRI-CBCT to planning CT significantly surpasses the onboard CBCT to planning CT registration, particularly for tumors not near the liver boundary, with an average error reduction of $1.53~\pm ~2$ .16 mm. Our study demonstrated that hybrid MRI/CBCT can apparently reduce localization errors in liver SBRT, potentially improving tumor control and reducing toxicities, and opening avenues for further margin reduction and dose escalation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Effect of barley straw biochar application on greenhouse gas emissions from upland soil for Chinese cabbage cultivation in short-term laboratory experiments
IF 2.5 3区 环境科学与生态学Journal of Mountain SciencePub Date : 2016-10-19 DOI: 10.1007/s11629-014-3428-z
Se-Won Kang, D. Seo, Y. Cheong, Ju-Wang Park, Jong-Hwan Park, Hang-Won Kang, Ki-Do Park, Y. Ok, Ju-Sik Cho
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
期刊最新文献
Table of Contents Affiliate Plan of the IEEE Nuclear and Plasma Sciences Society IEEE Transactions on Radiation and Plasma Medical Sciences Information for Authors IEEE Transactions on Radiation and Plasma Medical Sciences Publication Information Affiliate Plan of the IEEE Nuclear and Plasma Sciences Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1